Compare commits

...

6 Commits

Author SHA1 Message Date
Ethan Shapiro
284a29d7af f 2024-03-20 19:53:50 -07:00
Ethan Shapiro
3747af9d22 added state saving 2024-03-20 19:52:13 -07:00
Arthur Lu
4fb81317f0 add letter_guess symlink, add model loading into ai.py 2024-03-20 17:31:27 -07:00
Arthur Lu
12601964bd add eval script for convienience 2024-03-20 12:59:14 -07:00
Arthur Lu
c448e02512 add evaluation to eric's wordle solver (eval.py) 2024-03-20 12:53:40 -07:00
Arthur Lu
848d385482 run model train, abt 3 avg reward 2024-03-20 12:18:15 -07:00
7 changed files with 436 additions and 3070 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,338 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"import gym_wordle\n",
"from stable_baselines3 import DQN, PPO, common\n",
"import numpy as np\n",
"import tqdm"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<Monitor<WordleEnv instance>>\n"
]
}
],
"source": [
"env = gym_wordle.wordle.WordleEnv()\n",
"env = common.monitor.Monitor(env)\n",
"\n",
"print(env)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using cuda device\n",
"Wrapping the env in a DummyVecEnv.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6921a0721569456abf5bceac7e7b6b34",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 4.97 |\n",
"| ep_rew_mean | -63.8 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 10000 |\n",
"| fps | 1628 |\n",
"| time_elapsed | 30 |\n",
"| total_timesteps | 49995 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -70.5 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 20000 |\n",
"| fps | 662 |\n",
"| time_elapsed | 150 |\n",
"| total_timesteps | 99992 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 11.7 |\n",
"| n_updates | 12497 |\n",
"----------------------------------\n"
]
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<stable_baselines3.dqn.dqn.DQN at 0x1bfd6cc0210>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"total_timesteps = 100_000\n",
"model = DQN(\"MlpPolicy\", env, verbose=1, device='cuda')\n",
"model.learn(total_timesteps=total_timesteps, log_interval=10_000, progress_bar=True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"model.save(\"dqn_new_state\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\stable_baselines3\\common\\save_util.py:166: UserWarning: Could not deserialize object lr_schedule. Consider using `custom_objects` argument to replace this object.\n",
"Exception: code() argument 13 must be str, not int\n",
" warnings.warn(\n",
"c:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\stable_baselines3\\common\\save_util.py:166: UserWarning: Could not deserialize object exploration_schedule. Consider using `custom_objects` argument to replace this object.\n",
"Exception: code() argument 13 must be str, not int\n",
" warnings.warn(\n"
]
}
],
"source": [
"# model = DQN.load(\"dqn_wordle\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1.\n",
" 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1.\n",
" 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 0. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
"[1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1.\n",
" 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
"[1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1.\n",
" 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0.\n",
" 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
"[1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1.\n",
" 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1.\n",
" 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.\n",
" 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
"[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1.\n",
" 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1.\n",
" 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n",
"[1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1.\n",
" 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0.\n",
" 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 0. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
"[1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1.\n",
" 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.\n",
" 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n",
"[1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1.\n",
" 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0.\n",
" 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 0. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
"[1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1.\n",
" 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0.\n",
" 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 0. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 0. 0. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
"[1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1.\n",
" 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1.\n",
" 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1.\n",
" 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.\n",
" 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n",
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
"0\n"
]
}
],
"source": [
"env = gym_wordle.wordle.WordleEnv()\n",
"\n",
"for i in range(1000):\n",
" \n",
" state, info = env.reset()\n",
"\n",
" done = False\n",
"\n",
" wins = 0\n",
"\n",
" while not done:\n",
"\n",
" action, _states = model.predict(state, deterministic=True)\n",
"\n",
" state, reward, done, truncated, info = env.step(action)\n",
"\n",
" print(state)\n",
" if info[\"correct\"]:\n",
" wins += 1\n",
"\n",
"print(wins)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([1., 0., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n",
" 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.,\n",
" 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n",
" 1., 1., 0., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n",
" 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 1., 1., 1., 0., 1.,\n",
" 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n",
" 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
" 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n",
" 0., 0., 0., 0., 0., 0., 0., 1.]),\n",
" -50)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"state, reward"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -3,9 +3,27 @@ import string
import numpy as np import numpy as np
from stable_baselines3 import PPO, DQN
from letter_guess import LetterGuessingEnv
def load_valid_words(file_path='wordle_words.txt'):
"""
Load valid five-letter words from a specified text file.
Parameters:
- file_path (str): The path to the text file containing valid words.
Returns:
- list[str]: A list of valid words loaded from the file.
"""
with open(file_path, 'r') as file:
valid_words = [line.strip() for line in file if len(line.strip()) == 5]
return valid_words
class AI: class AI:
def __init__(self, vocab_file, num_letters=5, num_guesses=6): def __init__(self, vocab_file, model_file, num_letters=5, num_guesses=6, use_q_model=False):
self.vocab_file = vocab_file self.vocab_file = vocab_file
self.num_letters = num_letters self.num_letters = num_letters
self.num_guesses = 6 self.num_guesses = 6
@ -16,8 +34,38 @@ class AI:
self.domains = None self.domains = None
self.possible_letters = None self.possible_letters = None
self.use_q_model = use_q_model
if use_q_model:
# we initialize the same q env as the model train ONLY to simplify storing/calculating the gym state, not used to control the game at all
self.q_env = LetterGuessingEnv(vocab_file)
self.q_env_state, _ = self.q_env.reset()
# load model
self.q_model = PPO.load(model_file)
self.reset() self.reset()
def solve_eval(self, results_callback):
num_guesses = 0
while [len(e) for e in self.domains] != [1 for _ in range(self.num_letters)]:
num_guesses += 1
# sample a word, this would use the q_env_state if the q_model is used
word = self.sample()
# get emulated results
results = results_callback(word)
if self.use_q_model:
self.q_env.set_state(self.q_env_state)
# step the q_env to match the guess we just made
for i in range(len(word)):
char = word[i]
action = ord(char) - ord('a')
self.q_env_state, _, _, _, _ = self.q_env.step(action)
self.arc_consistency(word, results)
return num_guesses, word
def solve(self): def solve(self):
num_guesses = 0 num_guesses = 0
while [len(e) for e in self.domains] != [1 for _ in range(self.num_letters)]: while [len(e) for e in self.domains] != [1 for _ in range(self.num_letters)]:
@ -33,12 +81,7 @@ class AI:
print('-----------------------------------------------') print('-----------------------------------------------')
print(f'Guess #{num_guesses}/{self.num_guesses}: {word}') print(f'Guess #{num_guesses}/{self.num_guesses}: {word}')
print('-----------------------------------------------') print('-----------------------------------------------')
self.arc_consistency(word)
print(f'You did it! The word is {"".join([e[0] for e in self.domains])}')
def arc_consistency(self, word):
print(f'Performing arc consistency check on {word}...') print(f'Performing arc consistency check on {word}...')
print(f'Specify 0 for completely nonexistent letter at the specified index, 1 for existent letter but incorrect index, and 2 for correct letter at correct index.') print(f'Specify 0 for completely nonexistent letter at the specified index, 1 for existent letter but incorrect index, and 2 for correct letter at correct index.')
results = [] results = []
@ -53,6 +96,12 @@ class AI:
results.append(result) results.append(result)
break break
self.arc_consistency(word, results)
print(f'You did it! The word is {"".join([e[0] for e in self.domains])}')
return num_guesses
def arc_consistency(self, word, results):
self.possible_letters += [word[i] for i in range(len(word)) if results[i] == '1'] self.possible_letters += [word[i] for i in range(len(word)) if results[i] == '1']
for i in range(len(word)): for i in range(len(word)):
@ -70,11 +119,13 @@ class AI:
if results[i] == '2': if results[i] == '2':
self.domains[i] = [word[i]] self.domains[i] = [word[i]]
def reset(self): def reset(self):
self.domains = [list(string.ascii_lowercase) for _ in range(self.num_letters)] self.domains = [list(string.ascii_lowercase) for _ in range(self.num_letters)]
self.possible_letters = [] self.possible_letters = []
if self.use_q_model:
self.q_env_state, _ = self.q_env.reset()
def sample(self): def sample(self):
""" """
Samples a best word given the current domains Samples a best word given the current domains
@ -87,9 +138,30 @@ class AI:
pattern = re.compile(regex_string) pattern = re.compile(regex_string)
# From the words with the highest scores, only return the best word that match the regex pattern # From the words with the highest scores, only return the best word that match the regex pattern
max_qval = float('-inf')
best_word = None
for word, _ in self.best_words: for word, _ in self.best_words:
# reset the state back to before we guessed a word
if pattern.match(word) and False not in [e in word for e in self.possible_letters]: if pattern.match(word) and False not in [e in word for e in self.possible_letters]:
if self.use_q_model:
self.q_env.set_state(self.q_env_state)
# Use policy to grade word
# get the state and action pairs
curr_qval = 0
for l in word:
action = ord(l) - ord('a')
q_val = self.q_model.policy.evaluate_actions(self.q_env.get_obs(), action)
_, _, _, _, _ = self.q_env.step(action)
curr_qval += q_val
if curr_qval > max_qval:
max_qval = curr_qval
best_word = word
else:
# otherwise return the word from eric heuristic
return word return word
return best_word
def get_vocab(self, vocab_file): def get_vocab(self, vocab_file):
vocab = [] vocab = []

58
eric_wordle/eval.py Normal file
View File

@ -0,0 +1,58 @@
import argparse
from ai import AI
import numpy as np
from tqdm import tqdm
global solution
def result_callback(word):
global solution
result = ['0', '0', '0', '0', '0']
for i, letter in enumerate(word):
if solution[i] == word[i]:
result[i] = '2'
elif letter in solution:
result[i] = '1'
else:
pass
return result
def main(args):
global solution
if args.n is None:
raise Exception('Need to specify n (i.e. n = 1 for wordle, n = 4 for quordle, n = 16 for sedecordle).')
ai = AI(args.vocab_file, args.model_file, use_q_model=args.q_model)
total_guesses = 0
wins = 0
num_eval = args.num_eval
for i in tqdm(range(num_eval)):
idx = np.random.choice(range(len(ai.vocab)))
solution = ai.vocab[idx]
guesses, word = ai.solve_eval(results_callback=result_callback)
if word != solution:
total_guesses += 5
else:
total_guesses += guesses
wins += 1
ai.reset()
print(f"q_model?: {args.q_model} \t average guesses per game: {total_guesses / num_eval} \t win rate: {wins / num_eval}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--n', dest='n', type=int, default=None)
parser.add_argument('--vocab_file', dest='vocab_file', type=str, default='wordle_words.txt')
parser.add_argument('--num_eval', dest="num_eval", type=int, default=1000)
parser.add_argument('--model_file', dest="model_file", type=str, default='wordle_ppo_model')
parser.add_argument('--q_model', dest="q_model", type=bool, default=False)
args = parser.parse_args()
main(args)

1
eric_wordle/letter_guess.py Symbolic link
View File

@ -0,0 +1 @@
../letter_guess.py

2
eval.sh Executable file
View File

@ -0,0 +1,2 @@
python eric_wordle/eval.py --n 1 --vocab_file wordle_words.txt --num_eval 5000
python eric_wordle/eval.py --n 1 --vocab_file wordle_words.txt --num_eval 5000 --q_model True --model_file wordle_ppo_model

View File

@ -3,6 +3,7 @@ from gymnasium import spaces
import numpy as np import numpy as np
import random import random
import re import re
import copy
class LetterGuessingEnv(gym.Env): class LetterGuessingEnv(gym.Env):
@ -29,8 +30,28 @@ class LetterGuessingEnv(gym.Env):
self.reset() self.reset()
def clone_state(self):
# Clone the current state
return {
'target_word': self.target_word,
'letter_flags': copy.deepcopy(self.letter_flags),
'letter_positions': copy.deepcopy(self.letter_positions),
'guessed_letters': copy.deepcopy(self.guessed_letters),
'guess_prefix': self.guess_prefix,
'round': self.round
}
def set_state(self, state):
# Restore the state
self.target_word = state['target_word']
self.letter_flags = copy.deepcopy(state['letter_flags'])
self.letter_positions = copy.deepcopy(state['letter_positions'])
self.guessed_letters = copy.deepcopy(state['guessed_letters'])
self.guess_prefix = state['guess_prefix']
self.round = state['round']
def step(self, action): def step(self, action):
letter_index = action % 26 # Assuming action is the letter index directly letter_index = action # Assuming action is the letter index directly
position = len(self.guess_prefix) # The next position in the prefix is determined by its current length position = len(self.guess_prefix) # The next position in the prefix is determined by its current length
letter = chr(ord('a') + letter_index) letter = chr(ord('a') + letter_index)
@ -57,7 +78,7 @@ class LetterGuessingEnv(gym.Env):
# Update the letter_positions matrix to reflect the new guess # Update the letter_positions matrix to reflect the new guess
if position == 4: if position == 4:
self.letter_positions[:,:] = 1 self.letter_positions[:, :] = 1
else: else:
self.letter_positions[:, position] = 0 self.letter_positions[:, position] = 0
self.letter_positions[letter_index, position] = 1 self.letter_positions[letter_index, position] = 1
@ -72,15 +93,16 @@ class LetterGuessingEnv(gym.Env):
self.guess_prefix = '' self.guess_prefix = ''
self.round += 1 self.round += 1
# end after 5 rounds of total guesses # end after 3 rounds of total guesses
if self.round == 2: if self.round == 3:
# reward = 5 # reward = 5
done = True done = True
obs = self._get_obs() obs = self.get_obs()
if reward < -50: if reward < -5:
print(obs, reward, done) print(obs, reward, done)
exit(0)
return obs, reward, done, False, {} return obs, reward, done, False, {}
@ -91,8 +113,8 @@ class LetterGuessingEnv(gym.Env):
self.letter_positions = np.ones((26, 4), dtype=np.int32) self.letter_positions = np.ones((26, 4), dtype=np.int32)
self.guessed_letters = set() self.guessed_letters = set()
self.guess_prefix = "" # Reset the guess prefix for the new episode self.guess_prefix = "" # Reset the guess prefix for the new episode
self.round = 1 self.round = 0
return self._get_obs(), {} return self.get_obs(), {}
def encode_word(self, word): def encode_word(self, word):
encoded = np.zeros((26,)) encoded = np.zeros((26,))
@ -101,7 +123,7 @@ class LetterGuessingEnv(gym.Env):
encoded[index] = 1 encoded[index] = 1
return encoded return encoded
def _get_obs(self): def get_obs(self):
return np.concatenate([self.letter_flags.flatten(), self.letter_positions.flatten()]) return np.concatenate([self.letter_flags.flatten(), self.letter_positions.flatten()])
def render(self, mode='human'): def render(self, mode='human'):