mirror of
https://github.com/ltcptgeneral/cse151b-final-project.git
synced 2025-10-23 10:59:21 +00:00
Compare commits
7 Commits
ethan-test
...
arthur-tes
Author | SHA1 | Date | |
---|---|---|---|
|
dd5889da33 | ||
|
848ea719b7 | ||
|
f641d77c47 | ||
|
5ec123e0f1 | ||
|
e9622b6f68 | ||
|
83e81722d2 | ||
|
320f2f81b7 |
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,3 +1,3 @@
|
|||||||
**/data/*
|
**/data/*
|
||||||
/env
|
|
||||||
**/*.zip
|
**/*.zip
|
||||||
|
**/__pycache__
|
129
Gym-Wordle-main/.gitignore
vendored
129
Gym-Wordle-main/.gitignore
vendored
@@ -1,129 +0,0 @@
|
|||||||
# Byte-compiled / optimized / DLL files
|
|
||||||
__pycache__/
|
|
||||||
*.py[cod]
|
|
||||||
*$py.class
|
|
||||||
|
|
||||||
# C extensions
|
|
||||||
*.so
|
|
||||||
|
|
||||||
# Distribution / packaging
|
|
||||||
.Python
|
|
||||||
build/
|
|
||||||
develop-eggs/
|
|
||||||
dist/
|
|
||||||
downloads/
|
|
||||||
eggs/
|
|
||||||
.eggs/
|
|
||||||
lib/
|
|
||||||
lib64/
|
|
||||||
parts/
|
|
||||||
sdist/
|
|
||||||
var/
|
|
||||||
wheels/
|
|
||||||
pip-wheel-metadata/
|
|
||||||
share/python-wheels/
|
|
||||||
*.egg-info/
|
|
||||||
.installed.cfg
|
|
||||||
*.egg
|
|
||||||
MANIFEST
|
|
||||||
|
|
||||||
# PyInstaller
|
|
||||||
# Usually these files are written by a python script from a template
|
|
||||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
||||||
*.manifest
|
|
||||||
*.spec
|
|
||||||
|
|
||||||
# Installer logs
|
|
||||||
pip-log.txt
|
|
||||||
pip-delete-this-directory.txt
|
|
||||||
|
|
||||||
# Unit test / coverage reports
|
|
||||||
htmlcov/
|
|
||||||
.tox/
|
|
||||||
.nox/
|
|
||||||
.coverage
|
|
||||||
.coverage.*
|
|
||||||
.cache
|
|
||||||
nosetests.xml
|
|
||||||
coverage.xml
|
|
||||||
*.cover
|
|
||||||
*.py,cover
|
|
||||||
.hypothesis/
|
|
||||||
.pytest_cache/
|
|
||||||
|
|
||||||
# Translations
|
|
||||||
*.mo
|
|
||||||
*.pot
|
|
||||||
|
|
||||||
# Django stuff:
|
|
||||||
*.log
|
|
||||||
local_settings.py
|
|
||||||
db.sqlite3
|
|
||||||
db.sqlite3-journal
|
|
||||||
|
|
||||||
# Flask stuff:
|
|
||||||
instance/
|
|
||||||
.webassets-cache
|
|
||||||
|
|
||||||
# Scrapy stuff:
|
|
||||||
.scrapy
|
|
||||||
|
|
||||||
# Sphinx documentation
|
|
||||||
docs/_build/
|
|
||||||
|
|
||||||
# PyBuilder
|
|
||||||
target/
|
|
||||||
|
|
||||||
# Jupyter Notebook
|
|
||||||
.ipynb_checkpoints
|
|
||||||
|
|
||||||
# IPython
|
|
||||||
profile_default/
|
|
||||||
ipython_config.py
|
|
||||||
|
|
||||||
# pyenv
|
|
||||||
.python-version
|
|
||||||
|
|
||||||
# pipenv
|
|
||||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
||||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
||||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
||||||
# install all needed dependencies.
|
|
||||||
#Pipfile.lock
|
|
||||||
|
|
||||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
|
||||||
__pypackages__/
|
|
||||||
|
|
||||||
# Celery stuff
|
|
||||||
celerybeat-schedule
|
|
||||||
celerybeat.pid
|
|
||||||
|
|
||||||
# SageMath parsed files
|
|
||||||
*.sage.py
|
|
||||||
|
|
||||||
# Environments
|
|
||||||
.env
|
|
||||||
.venv
|
|
||||||
env/
|
|
||||||
venv/
|
|
||||||
ENV/
|
|
||||||
env.bak/
|
|
||||||
venv.bak/
|
|
||||||
|
|
||||||
# Spyder project settings
|
|
||||||
.spyderproject
|
|
||||||
.spyproject
|
|
||||||
|
|
||||||
# Rope project settings
|
|
||||||
.ropeproject
|
|
||||||
|
|
||||||
# mkdocs documentation
|
|
||||||
/site
|
|
||||||
|
|
||||||
# mypy
|
|
||||||
.mypy_cache/
|
|
||||||
.dmypy.json
|
|
||||||
dmypy.json
|
|
||||||
|
|
||||||
# Pyre type checker
|
|
||||||
.pyre/
|
|
@@ -1,21 +0,0 @@
|
|||||||
MIT License
|
|
||||||
|
|
||||||
Copyright (c) 2022 David Kraemer
|
|
||||||
|
|
||||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
||||||
of this software and associated documentation files (the "Software"), to deal
|
|
||||||
in the Software without restriction, including without limitation the rights
|
|
||||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
||||||
copies of the Software, and to permit persons to whom the Software is
|
|
||||||
furnished to do so, subject to the following conditions:
|
|
||||||
|
|
||||||
The above copyright notice and this permission notice shall be included in all
|
|
||||||
copies or substantial portions of the Software.
|
|
||||||
|
|
||||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
||||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
||||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
||||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
||||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
||||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
||||||
SOFTWARE.
|
|
@@ -1,78 +0,0 @@
|
|||||||
# Gym-Wordle
|
|
||||||
|
|
||||||
An OpenAI gym compatible environment for training agents to play Wordle.
|
|
||||||
|
|
||||||
<p align='center'>
|
|
||||||
<img src="https://user-images.githubusercontent.com/8514041/152437216-d78e85f6-8049-4cb9-ae61-3c015a8a0e4f.gif"><br/>
|
|
||||||
<em>User-input demo of the environment</em>
|
|
||||||
</p>
|
|
||||||
|
|
||||||
## Installation
|
|
||||||
|
|
||||||
My goal is for a minimalist package that lets you install quickly and get on
|
|
||||||
with your research. Installation is just a simple call to `pip`:
|
|
||||||
|
|
||||||
```
|
|
||||||
$ pip install gym_wordle
|
|
||||||
```
|
|
||||||
|
|
||||||
### Requirements
|
|
||||||
|
|
||||||
In keeping with my desire to have a minimalist package, there are only three
|
|
||||||
major requirements:
|
|
||||||
|
|
||||||
* `numpy`
|
|
||||||
* `gym`
|
|
||||||
* `sty`, a lovely little package for stylizing text in terminals
|
|
||||||
|
|
||||||
## Usage
|
|
||||||
|
|
||||||
The basic flow for training agents with the `Wordle-v0` environment is the same
|
|
||||||
as with gym environments generally:
|
|
||||||
|
|
||||||
```Python
|
|
||||||
import gym
|
|
||||||
import gym_wordle
|
|
||||||
|
|
||||||
eng = gym.make("Wordle-v0")
|
|
||||||
|
|
||||||
done = False
|
|
||||||
while not done:
|
|
||||||
action = ... # RL magic
|
|
||||||
state, reward, done, info = env.step(action)
|
|
||||||
```
|
|
||||||
|
|
||||||
If you're like millions of other people, you're a Wordle-obsessive in your own
|
|
||||||
right. I have good news for you! The `Wordle-v0` environment currently has an
|
|
||||||
implemented `render` method, which allows you to see a human-friendly version
|
|
||||||
of the game. And it isn't so hard to set up the environment to play for
|
|
||||||
yourself. Here's an example script:
|
|
||||||
|
|
||||||
```Python
|
|
||||||
from gym_wordle.utils import play
|
|
||||||
|
|
||||||
play()
|
|
||||||
```
|
|
||||||
|
|
||||||
## Documentation
|
|
||||||
|
|
||||||
Coming soon!
|
|
||||||
|
|
||||||
## Examples
|
|
||||||
|
|
||||||
Coming soon!
|
|
||||||
|
|
||||||
## Citing
|
|
||||||
|
|
||||||
If you decide to use this project in your work, please consider a citation!
|
|
||||||
|
|
||||||
```bibtex
|
|
||||||
@misc{gym_wordle,
|
|
||||||
author = {Kraemer, David},
|
|
||||||
title = {An Environment for Reinforcement Learning with Wordle},
|
|
||||||
year = {2022},
|
|
||||||
publisher = {GitHub},
|
|
||||||
journal = {GitHub repository},
|
|
||||||
howpublished = {\url{https://github.com/DavidNKraemer/Gym-Wordle}},
|
|
||||||
}
|
|
||||||
```
|
|
@@ -1,7 +0,0 @@
|
|||||||
[build-system]
|
|
||||||
|
|
||||||
requires = [
|
|
||||||
"setuptools>=42",
|
|
||||||
"wheel"
|
|
||||||
]
|
|
||||||
build-backend = "setuptools.build_meta"
|
|
@@ -1,7 +0,0 @@
|
|||||||
from gym.envs.registration import register
|
|
||||||
from .wordle import WordleEnv
|
|
||||||
|
|
||||||
register(
|
|
||||||
id='Wordle-v0',
|
|
||||||
entry_point='gym_wordle.wordle:WordleEnv'
|
|
||||||
)
|
|
Binary file not shown.
Binary file not shown.
@@ -1,94 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import numpy.typing as npt
|
|
||||||
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
|
|
||||||
_chars = ' abcdefghijklmnopqrstuvwxyz'
|
|
||||||
_char_d = {c: i for i, c in enumerate(_chars)}
|
|
||||||
|
|
||||||
|
|
||||||
def to_english(array: npt.NDArray[np.int64]) -> str:
|
|
||||||
"""Converts a numpy integer array into a corresponding English string.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
array: Word in array (int) form. It is assumed that each integer in the
|
|
||||||
array is between 0,...,26 (inclusive).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A (lowercase) string representation of the word.
|
|
||||||
"""
|
|
||||||
return ''.join(_chars[i] for i in array)
|
|
||||||
|
|
||||||
|
|
||||||
def to_array(word: str) -> npt.NDArray[np.int64]:
|
|
||||||
"""Converts a string of characters into a corresponding numpy array.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
word: Word in string form. It is assumed that each character in the
|
|
||||||
string is either an empty space ' ' or lowercase alphabetical
|
|
||||||
character.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
An array representation of the word.
|
|
||||||
"""
|
|
||||||
return np.array([_char_d[c] for c in word])
|
|
||||||
|
|
||||||
|
|
||||||
def get_words(category: str, build: bool=False) -> npt.NDArray[np.int64]:
|
|
||||||
"""Loads a list of words in array form.
|
|
||||||
|
|
||||||
If specified, this will recompute the list from the human-readable list of
|
|
||||||
words, and save the results in array form.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
category: Either 'guess' or 'solution', which corresponds to the list
|
|
||||||
of acceptable guess words and the list of acceptable solution words.
|
|
||||||
build: If True, recomputes and saves the array-version of the computed
|
|
||||||
list for future access.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
An array representation of the list of words specified by the category.
|
|
||||||
This array has two dimensions, and the number of columns is fixed at
|
|
||||||
five.
|
|
||||||
"""
|
|
||||||
assert category in {'guess', 'solution'}
|
|
||||||
|
|
||||||
arr_path = Path(__file__).parent / f'dictionary/{category}_list.npy'
|
|
||||||
if build:
|
|
||||||
list_path = Path(__file__).parent / f'dictionary/{category}_list.csv'
|
|
||||||
|
|
||||||
with open(list_path, 'r') as f:
|
|
||||||
words = np.array([to_array(line.strip()) for line in f])
|
|
||||||
np.save(arr_path, words)
|
|
||||||
|
|
||||||
return np.load(arr_path)
|
|
||||||
|
|
||||||
|
|
||||||
def play():
|
|
||||||
"""Play Wordle yourself!"""
|
|
||||||
import gym
|
|
||||||
import gym_wordle
|
|
||||||
|
|
||||||
env = gym.make('Wordle-v0') # load the environment
|
|
||||||
|
|
||||||
env.reset()
|
|
||||||
solution = to_english(env.unwrapped.solution_space[env.solution]).upper() # no peeking!
|
|
||||||
|
|
||||||
done = False
|
|
||||||
|
|
||||||
while not done:
|
|
||||||
action = -1
|
|
||||||
|
|
||||||
# in general, the environment won't be forgiving if you input an
|
|
||||||
# invalid word, but for this function I want to let you screw up user
|
|
||||||
# input without consequence, so just loops until valid input is taken
|
|
||||||
while not env.action_space.contains(action):
|
|
||||||
guess = input('Guess: ')
|
|
||||||
action = env.unwrapped.action_space.index_of(to_array(guess))
|
|
||||||
|
|
||||||
state, reward, done, info = env.step(action)
|
|
||||||
env.render()
|
|
||||||
|
|
||||||
print(f"The word was {solution}")
|
|
||||||
|
|
@@ -1,286 +0,0 @@
|
|||||||
import gym
|
|
||||||
import numpy as np
|
|
||||||
import numpy.typing as npt
|
|
||||||
from sty import fg, bg, ef, rs
|
|
||||||
|
|
||||||
from collections import Counter
|
|
||||||
from gym_wordle.utils import to_english, to_array, get_words
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
|
|
||||||
class WordList(gym.spaces.Discrete):
|
|
||||||
"""Super class for defining a space of valid words according to a specified
|
|
||||||
list.
|
|
||||||
|
|
||||||
TODO: Fix these paragraphs
|
|
||||||
The space is a subclass of gym.spaces.Discrete, where each element
|
|
||||||
corresponds to an index of a valid word in the word list. The obfuscation
|
|
||||||
is necessary for more direct implementation of RL algorithms, which expect
|
|
||||||
spaces of less sophisticated form.
|
|
||||||
|
|
||||||
In addition to the default methods of the Discrete space, it implements
|
|
||||||
a __getitem__ method for easy index lookup, and an index_of method to
|
|
||||||
convert potential words into their corresponding index (if they exist).
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, words: npt.NDArray[np.int64], **kwargs):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
words: Collection of words in array form with shape (_, 5), where
|
|
||||||
each word is a row of the array. Each array element is an integer
|
|
||||||
between 0,...,26 (inclusive).
|
|
||||||
kwargs: See documentation for gym.spaces.MultiDiscrete
|
|
||||||
"""
|
|
||||||
super().__init__(words.shape[0], **kwargs)
|
|
||||||
self.words = words
|
|
||||||
|
|
||||||
def __getitem__(self, index: int) -> npt.NDArray[np.int64]:
|
|
||||||
"""Obtains the (int-encoded) word associated with the given index.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
index: Index for the list of words.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Associated word at the position specified by index.
|
|
||||||
"""
|
|
||||||
return self.words[index]
|
|
||||||
|
|
||||||
def index_of(self, word: npt.NDArray[np.int64]) -> int:
|
|
||||||
"""Given a word, determine its index in the list (if it exists),
|
|
||||||
otherwise returning -1 if no index exists.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
word: Word to find in the word list.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
The index of the given word if it exists, otherwise -1.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
index, = np.nonzero((word == self.words).all(axis=1))
|
|
||||||
return index[0]
|
|
||||||
except:
|
|
||||||
return -1
|
|
||||||
|
|
||||||
|
|
||||||
class SolutionList(WordList):
|
|
||||||
"""Space for *solution* words to the Wordle environment.
|
|
||||||
|
|
||||||
In the game Wordle, there are two different collections of words:
|
|
||||||
|
|
||||||
* "guesses", which the game accepts as valid words to use to guess the
|
|
||||||
answer.
|
|
||||||
* "solutions", which the game uses to choose solutions from.
|
|
||||||
|
|
||||||
Of course, the set of solutions is a strict subset of the set of guesses.
|
|
||||||
|
|
||||||
Reference: https://fivethirtyeight.com/features/when-the-riddler-met-wordle/
|
|
||||||
|
|
||||||
This class represents the set of solution words.
|
|
||||||
"""
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
kwargs: See documentation for gym.spaces.MultiDiscrete
|
|
||||||
"""
|
|
||||||
words = get_words('solution')
|
|
||||||
super().__init__(words, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
class WordleObsSpace(gym.spaces.Box):
|
|
||||||
"""Implementation of the state (observation) space in terms of gym
|
|
||||||
primatives, in this case, gym.spaces.Box.
|
|
||||||
|
|
||||||
The Wordle observation space can be thought of as a 6x5 array with two
|
|
||||||
channels:
|
|
||||||
|
|
||||||
- the character channel, indicating which characters are placed on the
|
|
||||||
board (unfilled rows are marked with the empty character, 0)
|
|
||||||
- the flag channel, indicating the in-game information associated with
|
|
||||||
each character's placement (green highlight, yellow highlight, etc.)
|
|
||||||
|
|
||||||
where there are 6 rows, one for each turn in the game, and 5 columns, since
|
|
||||||
the solution will always be a word of length 5.
|
|
||||||
|
|
||||||
For simplicity, and compatibility with the stable_baselines algorithms,
|
|
||||||
this multichannel is modeled as a 6x10 array, where the two channels are
|
|
||||||
horizontally appended (along columns). Thus each row in the observation
|
|
||||||
should be interpreted as
|
|
||||||
|
|
||||||
c0 c1 c2 c3 c4 f0 f1 f2 f3 f4
|
|
||||||
|
|
||||||
when the word is c0...c4 and its associated flags are f0...f4.
|
|
||||||
|
|
||||||
While the superclass method `sample` is available to the WordleObsSpace, it
|
|
||||||
should be emphasized that the output of `sample` will (almost surely) not
|
|
||||||
correspond to a real game configuration, because the sampling is not out of
|
|
||||||
possible game configurations. Instead, the Box superclass just samples the
|
|
||||||
integer array space uniformly.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
self.n_rows = 6
|
|
||||||
self.n_cols = 5
|
|
||||||
self.max_char = 26
|
|
||||||
self.max_flag = 4
|
|
||||||
|
|
||||||
low = np.zeros((self.n_rows, 2*self.n_cols))
|
|
||||||
high = np.c_[np.full((self.n_rows, self.n_cols), self.max_char),
|
|
||||||
np.full((self.n_rows, self.n_cols), self.max_flag)]
|
|
||||||
|
|
||||||
super().__init__(low, high, dtype=np.int64, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
class GuessList(WordList):
|
|
||||||
"""Space for *solution* words to the Wordle environment.
|
|
||||||
|
|
||||||
In the game Wordle, there are two different collections of words:
|
|
||||||
|
|
||||||
* "guesses", which the game accepts as valid words to use to guess the
|
|
||||||
answer.
|
|
||||||
* "solutions", which the game uses to choose solutions from.
|
|
||||||
|
|
||||||
Of course, the set of solutions is a strict subset of the set of guesses.
|
|
||||||
|
|
||||||
Reference: https://fivethirtyeight.com/features/when-the-riddler-met-wordle/
|
|
||||||
|
|
||||||
This class represents the set of guess words.
|
|
||||||
"""
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
kwargs: See documentation for gym.spaces.MultiDiscrete
|
|
||||||
"""
|
|
||||||
words = get_words('guess')
|
|
||||||
super().__init__(words, **kwargs)
|
|
||||||
|
|
||||||
|
|
||||||
class WordleEnv(gym.Env):
|
|
||||||
|
|
||||||
metadata = {'render.modes': ['human']}
|
|
||||||
|
|
||||||
# character flag codes
|
|
||||||
no_char = 0
|
|
||||||
right_pos = 1
|
|
||||||
wrong_pos = 2
|
|
||||||
wrong_char = 3
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.seed()
|
|
||||||
self.action_space = GuessList()
|
|
||||||
self.solution_space = SolutionList()
|
|
||||||
|
|
||||||
self.observation_space = WordleObsSpace()
|
|
||||||
|
|
||||||
self._highlights = {
|
|
||||||
self.right_pos: (bg.green, bg.rs),
|
|
||||||
self.wrong_pos: (bg.yellow, bg.rs),
|
|
||||||
self.wrong_char: ('', ''),
|
|
||||||
self.no_char: ('', ''),
|
|
||||||
}
|
|
||||||
|
|
||||||
self.n_rounds = 6
|
|
||||||
self.n_letters = 5
|
|
||||||
|
|
||||||
def _highlighter(self, char: str, flag: int) -> str:
|
|
||||||
"""Terminal renderer functionality. Properly highlights a character
|
|
||||||
based on the flag associated with it.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
char: Character in question.
|
|
||||||
flag: Associated flag, one of:
|
|
||||||
- 0: no character (render no background)
|
|
||||||
- 1: right position (render green background)
|
|
||||||
- 2: wrong position (render yellow background)
|
|
||||||
- 3: wrong character (render no background)
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Correct ASCII sequence producing the desired character in the
|
|
||||||
correct background.
|
|
||||||
"""
|
|
||||||
front, back = self._highlights[flag]
|
|
||||||
return front + char + back
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
self.round = 0
|
|
||||||
self.solution = self.solution_space.sample()
|
|
||||||
|
|
||||||
self.state = np.zeros((self.n_rounds, 2 * self.n_letters),
|
|
||||||
dtype=np.int64)
|
|
||||||
|
|
||||||
return self.state
|
|
||||||
|
|
||||||
def render(self, mode: str ='human'):
|
|
||||||
"""Renders the Wordle environment.
|
|
||||||
|
|
||||||
Currently supported render modes:
|
|
||||||
|
|
||||||
- human: renders the Wordle game to the terminal.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
mode: the mode to render with
|
|
||||||
"""
|
|
||||||
if mode == 'human':
|
|
||||||
for row in self.states:
|
|
||||||
text = ''.join(map(
|
|
||||||
self._highlighter,
|
|
||||||
to_english(row[:self.n_letters]).upper(),
|
|
||||||
row[self.n_letters:]
|
|
||||||
))
|
|
||||||
|
|
||||||
print(text)
|
|
||||||
else:
|
|
||||||
super(WordleEnv, self).render(mode=mode)
|
|
||||||
|
|
||||||
def step(self, action):
|
|
||||||
"""Run one step of the Wordle game. Every game must be previously
|
|
||||||
initialized by a call to the `reset` method.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
action: Word guessed by the agent.
|
|
||||||
Returns:
|
|
||||||
state (object): Wordle game state after the guess.
|
|
||||||
reward (float): Reward associated with the guess (-1 for incorrect,
|
|
||||||
0 for correct)
|
|
||||||
done (bool): Whether the game has ended (by a correct guess or
|
|
||||||
after six guesses).
|
|
||||||
info (dict): Auxiliary diagnostic information (empty).
|
|
||||||
"""
|
|
||||||
assert self.action_space.contains(action), 'Invalid word!'
|
|
||||||
|
|
||||||
# transform the action, solution indices to their words
|
|
||||||
action = self.action_space[action]
|
|
||||||
solution = self.solution_space[self.solution]
|
|
||||||
|
|
||||||
# populate the word chars into the row (character channel)
|
|
||||||
self.state[self.round][:self.n_letters] = action
|
|
||||||
|
|
||||||
# populate the flag characters into the row (flag channel)
|
|
||||||
counter = Counter()
|
|
||||||
for i, char in enumerate(action):
|
|
||||||
flag_i = i + self.n_letters # starts at 5
|
|
||||||
counter[char] += 1
|
|
||||||
|
|
||||||
if char == solution[i]: # character is in correct position
|
|
||||||
self.state[self.round, i] = self.right_pos
|
|
||||||
elif counter[char] <= (char == solution).sum():
|
|
||||||
# current character has been seen within correct number of
|
|
||||||
# occurrences
|
|
||||||
self.state[self.round, i] = self.wrong_pos
|
|
||||||
else:
|
|
||||||
# wrong character, or "correct" character too many times
|
|
||||||
self.state[self.round, i] = self.wrong_char
|
|
||||||
|
|
||||||
self.round += 1
|
|
||||||
|
|
||||||
correct = (action == solution).all()
|
|
||||||
game_over = (self.round == self.n_rounds)
|
|
||||||
|
|
||||||
done = correct or game_over
|
|
||||||
|
|
||||||
# Total reward equals -(number of incorrect guesses)
|
|
||||||
reward = 0. if correct else -1.
|
|
||||||
|
|
||||||
return self.state, reward, done, {}
|
|
||||||
|
|
@@ -1,35 +0,0 @@
|
|||||||
from setuptools import setup, find_packages
|
|
||||||
|
|
||||||
with open('README.md', 'r', encoding='utf-8') as fh:
|
|
||||||
long_description = fh.read()
|
|
||||||
|
|
||||||
setup(
|
|
||||||
name='gym_wordle',
|
|
||||||
version='0.1.3',
|
|
||||||
author='David Kraemer',
|
|
||||||
author_email='david.kraemer@stonybrook.edu',
|
|
||||||
description='OpenAI gym environment for training agents on Wordle',
|
|
||||||
long_description=long_description,
|
|
||||||
long_description_content_type='text/markdown',
|
|
||||||
url='https://github.com/DavidNKraemer/Gym-Wordle',
|
|
||||||
packages=find_packages(
|
|
||||||
include=[
|
|
||||||
'gym_wordle',
|
|
||||||
'gym_wordle.*'
|
|
||||||
]
|
|
||||||
),
|
|
||||||
package_data={
|
|
||||||
'gym_wordle': ['dictionary/*']
|
|
||||||
},
|
|
||||||
python_requires='>=3.7',
|
|
||||||
classifiers=[
|
|
||||||
"Programming Language :: Python :: 3",
|
|
||||||
"License :: OSI Approved :: MIT License",
|
|
||||||
"Operating System :: OS Independent",
|
|
||||||
],
|
|
||||||
install_requires=[
|
|
||||||
'numpy>=1.20',
|
|
||||||
'gym==0.19',
|
|
||||||
'sty==1.0',
|
|
||||||
],
|
|
||||||
)
|
|
@@ -1,91 +0,0 @@
|
|||||||
import torch
|
|
||||||
|
|
||||||
|
|
||||||
class Agent:
|
|
||||||
|
|
||||||
def __init__(self, ) -> None:
|
|
||||||
# BATCH_SIZE is the number of transitions sampled from the replay buffer
|
|
||||||
# GAMMA is the discount factor as mentioned in the previous section
|
|
||||||
# EPS_START is the starting value of epsilon
|
|
||||||
# EPS_END is the final value of epsilon
|
|
||||||
# EPS_DECAY controls the rate of exponential decay of epsilon, higher means a slower decay
|
|
||||||
# TAU is the update rate of the target network
|
|
||||||
# LR is the learning rate of the ``AdamW`` optimizer
|
|
||||||
self.batch_size = 128
|
|
||||||
self.gamma = 0.99
|
|
||||||
self.eps_start = 0.9
|
|
||||||
self.eps_end = 0.05
|
|
||||||
self.eps_decay = 1000
|
|
||||||
self.tau = 0.005
|
|
||||||
self.lr = 1e-4
|
|
||||||
self.n_actions = n_actions
|
|
||||||
|
|
||||||
policy_net = DQN(n_observations, n_actions).to(device)
|
|
||||||
target_net = DQN(n_observations, n_actions).to(device)
|
|
||||||
target_net.load_state_dict(policy_net.state_dict())
|
|
||||||
|
|
||||||
optimizer = optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
|
|
||||||
memory = ReplayMemory(10000)
|
|
||||||
|
|
||||||
def get_state(self, game):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def select_action(state):
|
|
||||||
sample = random.random()
|
|
||||||
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
|
|
||||||
math.exp(-1. * steps_done / EPS_DECAY)
|
|
||||||
steps_done += 1
|
|
||||||
if sample > eps_threshold:
|
|
||||||
with torch.no_grad():
|
|
||||||
# t.max(1) will return the largest column value of each row.
|
|
||||||
# second column on max result is index of where max element was
|
|
||||||
# found, so we pick action with the larger expected reward.
|
|
||||||
return policy_net(state).max(1).indices.view(1, 1)
|
|
||||||
else:
|
|
||||||
return torch.tensor([[env.action_space.sample()]], device=device, dtype=torch.long)
|
|
||||||
|
|
||||||
def optimize_model():
|
|
||||||
if len(memory) < BATCH_SIZE:
|
|
||||||
return
|
|
||||||
transitions = memory.sample(BATCH_SIZE)
|
|
||||||
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
|
|
||||||
# detailed explanation). This converts batch-array of Transitions
|
|
||||||
# to Transition of batch-arrays.
|
|
||||||
batch = Transition(*zip(*transitions))
|
|
||||||
|
|
||||||
# Compute a mask of non-final states and concatenate the batch elements
|
|
||||||
# (a final state would've been the one after which simulation ended)
|
|
||||||
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
|
|
||||||
batch.next_state)), device=device, dtype=torch.bool)
|
|
||||||
non_final_next_states = torch.cat([s for s in batch.next_state
|
|
||||||
if s is not None])
|
|
||||||
state_batch = torch.cat(batch.state)
|
|
||||||
action_batch = torch.cat(batch.action)
|
|
||||||
reward_batch = torch.cat(batch.reward)
|
|
||||||
|
|
||||||
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
|
|
||||||
# columns of actions taken. These are the actions which would've been taken
|
|
||||||
# for each batch state according to policy_net
|
|
||||||
state_action_values = policy_net(state_batch).gather(1, action_batch)
|
|
||||||
|
|
||||||
# Compute V(s_{t+1}) for all next states.
|
|
||||||
# Expected values of actions for non_final_next_states are computed based
|
|
||||||
# on the "older" target_net; selecting their best reward with max(1).values
|
|
||||||
# This is merged based on the mask, such that we'll have either the expected
|
|
||||||
# state value or 0 in case the state was final.
|
|
||||||
next_state_values = torch.zeros(BATCH_SIZE, device=device)
|
|
||||||
with torch.no_grad():
|
|
||||||
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1).values
|
|
||||||
# Compute the expected Q values
|
|
||||||
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
|
|
||||||
|
|
||||||
# Compute Huber loss
|
|
||||||
criterion = nn.SmoothL1Loss()
|
|
||||||
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
|
|
||||||
|
|
||||||
# Optimize the model
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss.backward()
|
|
||||||
# In-place gradient clipping
|
|
||||||
torch.nn.utils.clip_grad_value_(policy_net.parameters(), 100)
|
|
||||||
optimizer.step()
|
|
@@ -1,16 +0,0 @@
|
|||||||
import pathlib
|
|
||||||
import sys
|
|
||||||
from string import ascii_letters
|
|
||||||
|
|
||||||
in_path = pathlib.Path(sys.argv[1])
|
|
||||||
out_path = pathlib.Path(sys.argv[2])
|
|
||||||
|
|
||||||
words = sorted(
|
|
||||||
{
|
|
||||||
word.lower()
|
|
||||||
for word in in_path.read_text(encoding="utf-8").split()
|
|
||||||
if all(letter in ascii_letters for letter in word)
|
|
||||||
},
|
|
||||||
key=lambda word: (len(word), word),
|
|
||||||
)
|
|
||||||
out_path.write_text("\n".join(words))
|
|
File diff suppressed because it is too large
Load Diff
@@ -1,44 +0,0 @@
|
|||||||
import math
|
|
||||||
import random
|
|
||||||
import matplotlib
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from collections import namedtuple, deque
|
|
||||||
from itertools import count
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.optim as optim
|
|
||||||
import torch.nn.functional as F
|
|
||||||
|
|
||||||
|
|
||||||
Transition = namedtuple('Transition',
|
|
||||||
('state', 'action', 'next_state', 'reward'))
|
|
||||||
|
|
||||||
|
|
||||||
class ReplayMemory(object):
|
|
||||||
|
|
||||||
def __init__(self, capacity: int) -> None:
|
|
||||||
self.memory = deque([], maxlen=capacity)
|
|
||||||
|
|
||||||
def push(self, *args):
|
|
||||||
self.memory.append(Transition(*args))
|
|
||||||
|
|
||||||
def sample(self, batch_size):
|
|
||||||
return random.sample(self.memory, batch_size)
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.memory)
|
|
||||||
|
|
||||||
|
|
||||||
class DQN(nn.Module):
|
|
||||||
|
|
||||||
def __init__(self, n_observations: int, n_actions: int) -> None:
|
|
||||||
super(DQN, self).__init__()
|
|
||||||
self.layer1 = nn.Linear(n_observations, 128)
|
|
||||||
self.layer2 = nn.Linear(128, 128)
|
|
||||||
self.layer3 = nn.Linear(128, n_actions)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = F.relu(self.layer1(x))
|
|
||||||
x = F.relu(self.layer2(x))
|
|
||||||
return self.layer3(x)
|
|
@@ -1,61 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 4,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from string import ascii_letters, ascii_uppercase, ascii_lowercase"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 3,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"'ABCDEFGHIJKLMNOPQRSTUVWXYZ'"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 3,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"ascii_uppercase"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "env",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.11.5"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
File diff suppressed because it is too large
Load Diff
@@ -1,119 +0,0 @@
|
|||||||
import contextlib
|
|
||||||
import pathlib
|
|
||||||
import random
|
|
||||||
from string import ascii_letters, ascii_lowercase
|
|
||||||
|
|
||||||
from rich.console import Console
|
|
||||||
from rich.theme import Theme
|
|
||||||
|
|
||||||
console = Console(width=40, theme=Theme({"warning": "red on yellow"}))
|
|
||||||
|
|
||||||
NUM_LETTERS = 5
|
|
||||||
NUM_GUESSES = 6
|
|
||||||
WORDS_PATH = pathlib.Path(__file__).parent / "wordlist.txt"
|
|
||||||
|
|
||||||
|
|
||||||
class Wordle:
|
|
||||||
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.word_list = WORDS_PATH.read_text(encoding="utf-8").split("\n")
|
|
||||||
self.n_guesses = 6
|
|
||||||
self.num_letters = 5
|
|
||||||
self.curr_word = None
|
|
||||||
self.reset()
|
|
||||||
|
|
||||||
def refresh_page(self, headline):
|
|
||||||
console.clear()
|
|
||||||
console.rule(f"[bold blue]:leafy_green: {headline} :leafy_green:[/]\n")
|
|
||||||
|
|
||||||
def start_game(self):
|
|
||||||
# get a new random word
|
|
||||||
word = self.get_random_word(self.word_list)
|
|
||||||
|
|
||||||
self.curr_word = word
|
|
||||||
|
|
||||||
def get_state(self):
|
|
||||||
return
|
|
||||||
|
|
||||||
def action_to_word(self, action):
|
|
||||||
# Calculate the word from the array
|
|
||||||
word = ''
|
|
||||||
for i in range(0, len(ascii_lowercase), 26):
|
|
||||||
# Find the index of 1 in each block of 26
|
|
||||||
letter_index = action[i:i+26].index(1)
|
|
||||||
# Append the corresponding letter to the word
|
|
||||||
word += ascii_lowercase[letter_index]
|
|
||||||
|
|
||||||
return word
|
|
||||||
|
|
||||||
def play_guess(self, action):
|
|
||||||
# probably an array of length 26 * 5 for 26 letters and 5 positions
|
|
||||||
guess = action
|
|
||||||
|
|
||||||
def get_random_word(self, word_list):
|
|
||||||
if words := [
|
|
||||||
word.upper()
|
|
||||||
for word in word_list
|
|
||||||
if len(word) == NUM_LETTERS
|
|
||||||
and all(letter in ascii_letters for letter in word)
|
|
||||||
]:
|
|
||||||
return random.choice(words)
|
|
||||||
else:
|
|
||||||
console.print(
|
|
||||||
f"No words of length {NUM_LETTERS} in the word list",
|
|
||||||
style="warning",
|
|
||||||
)
|
|
||||||
raise SystemExit()
|
|
||||||
|
|
||||||
def show_guesses(self, guesses, word):
|
|
||||||
letter_status = {letter: letter for letter in ascii_lowercase}
|
|
||||||
for guess in guesses:
|
|
||||||
styled_guess = []
|
|
||||||
for letter, correct in zip(guess, word):
|
|
||||||
if letter == correct:
|
|
||||||
style = "bold white on green"
|
|
||||||
elif letter in word:
|
|
||||||
style = "bold white on yellow"
|
|
||||||
elif letter in ascii_letters:
|
|
||||||
style = "white on #666666"
|
|
||||||
else:
|
|
||||||
style = "dim"
|
|
||||||
styled_guess.append(f"[{style}]{letter}[/]")
|
|
||||||
if letter != "_":
|
|
||||||
letter_status[letter] = f"[{style}]{letter}[/]"
|
|
||||||
|
|
||||||
console.print("".join(styled_guess), justify="center")
|
|
||||||
console.print("\n" + "".join(letter_status.values()), justify="center")
|
|
||||||
|
|
||||||
def guess_word(self, previous_guesses):
|
|
||||||
guess = console.input("\nGuess word: ").upper()
|
|
||||||
|
|
||||||
if guess in previous_guesses:
|
|
||||||
console.print(f"You've already guessed {guess}.", style="warning")
|
|
||||||
return guess_word(previous_guesses)
|
|
||||||
|
|
||||||
if len(guess) != NUM_LETTERS:
|
|
||||||
console.print(
|
|
||||||
f"Your guess must be {NUM_LETTERS} letters.", style="warning"
|
|
||||||
)
|
|
||||||
return guess_word(previous_guesses)
|
|
||||||
|
|
||||||
if any((invalid := letter) not in ascii_letters for letter in guess):
|
|
||||||
console.print(
|
|
||||||
f"Invalid letter: '{invalid}'. Please use English letters.",
|
|
||||||
style="warning",
|
|
||||||
)
|
|
||||||
return guess_word(previous_guesses)
|
|
||||||
|
|
||||||
return guess
|
|
||||||
|
|
||||||
def reset(self, guesses, word, guessed_correctly, n_episodes):
|
|
||||||
refresh_page(headline=f"Game: {n_episodes}")
|
|
||||||
|
|
||||||
if guessed_correctly:
|
|
||||||
console.print(f"\n[bold white on green]Correct, the word is {word}[/]")
|
|
||||||
else:
|
|
||||||
console.print(f"\n[bold white on red]Sorry, the word was {word}[/]")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
128
dqn_wordle.ipynb
128
dqn_wordle.ipynb
@@ -1,128 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 1,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import gymnasium as gym\n",
|
|
||||||
"from stable_baselines3 import DQN\n",
|
|
||||||
"import numpy as np"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"ename": "NameNotFound",
|
|
||||||
"evalue": "Environment `Wordle` doesn't exist.",
|
|
||||||
"output_type": "error",
|
|
||||||
"traceback": [
|
|
||||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
||||||
"\u001b[1;31mNameNotFound\u001b[0m Traceback (most recent call last)",
|
|
||||||
"Cell \u001b[1;32mIn[2], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m env \u001b[38;5;241m=\u001b[39m \u001b[43mgym\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmake\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mWordle-v0\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(env)\n",
|
|
||||||
"File \u001b[1;32mc:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\gymnasium\\envs\\registration.py:741\u001b[0m, in \u001b[0;36mmake\u001b[1;34m(id, max_episode_steps, autoreset, apply_api_compatibility, disable_env_checker, **kwargs)\u001b[0m\n\u001b[0;32m 738\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mid\u001b[39m, \u001b[38;5;28mstr\u001b[39m)\n\u001b[0;32m 740\u001b[0m \u001b[38;5;66;03m# The environment name can include an unloaded module in \"module:env_name\" style\u001b[39;00m\n\u001b[1;32m--> 741\u001b[0m env_spec \u001b[38;5;241m=\u001b[39m \u001b[43m_find_spec\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mid\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 743\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(env_spec, EnvSpec)\n\u001b[0;32m 745\u001b[0m \u001b[38;5;66;03m# Update the env spec kwargs with the `make` kwargs\u001b[39;00m\n",
|
|
||||||
"File \u001b[1;32mc:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\gymnasium\\envs\\registration.py:527\u001b[0m, in \u001b[0;36m_find_spec\u001b[1;34m(env_id)\u001b[0m\n\u001b[0;32m 521\u001b[0m logger\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[0;32m 522\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUsing the latest versioned environment `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnew_env_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m` \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 523\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124minstead of the unversioned environment `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00menv_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m`.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 524\u001b[0m )\n\u001b[0;32m 526\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m env_spec \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m--> 527\u001b[0m \u001b[43m_check_version_exists\u001b[49m\u001b[43m(\u001b[49m\u001b[43mns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mversion\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 528\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m error\u001b[38;5;241m.\u001b[39mError(\n\u001b[0;32m 529\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo registered env with id: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00menv_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m. Did you register it, or import the package that registers it? Use `gymnasium.pprint_registry()` to see all of the registered environments.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 530\u001b[0m )\n\u001b[0;32m 532\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m env_spec\n",
|
|
||||||
"File \u001b[1;32mc:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\gymnasium\\envs\\registration.py:393\u001b[0m, in \u001b[0;36m_check_version_exists\u001b[1;34m(ns, name, version)\u001b[0m\n\u001b[0;32m 390\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m get_env_id(ns, name, version) \u001b[38;5;129;01min\u001b[39;00m registry:\n\u001b[0;32m 391\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m--> 393\u001b[0m \u001b[43m_check_name_exists\u001b[49m\u001b[43m(\u001b[49m\u001b[43mns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 394\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m version \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 395\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n",
|
|
||||||
"File \u001b[1;32mc:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\gymnasium\\envs\\registration.py:370\u001b[0m, in \u001b[0;36m_check_name_exists\u001b[1;34m(ns, name)\u001b[0m\n\u001b[0;32m 367\u001b[0m namespace_msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m in namespace \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mns\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m ns \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 368\u001b[0m suggestion_msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Did you mean: `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msuggestion[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m`?\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m suggestion \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m--> 370\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m error\u001b[38;5;241m.\u001b[39mNameNotFound(\n\u001b[0;32m 371\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEnvironment `\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m` doesn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt exist\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnamespace_msg\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msuggestion_msg\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 372\u001b[0m )\n",
|
|
||||||
"\u001b[1;31mNameNotFound\u001b[0m: Environment `Wordle` doesn't exist."
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"env = gym.make(\"Wordle-v0\")\n",
|
|
||||||
"\n",
|
|
||||||
"print(env)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 35,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"total_timesteps = 100000\n",
|
|
||||||
"model = DQN(\"MlpPolicy\", env, verbose=0)\n",
|
|
||||||
"model.learn(total_timesteps=total_timesteps, progress_bar=True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def test(model):\n",
|
|
||||||
"\n",
|
|
||||||
" end_rewards = []\n",
|
|
||||||
"\n",
|
|
||||||
" for i in range(1000):\n",
|
|
||||||
" \n",
|
|
||||||
" state = env.reset()\n",
|
|
||||||
"\n",
|
|
||||||
" done = False\n",
|
|
||||||
"\n",
|
|
||||||
" while not done:\n",
|
|
||||||
"\n",
|
|
||||||
" action, _states = model.predict(state, deterministic=True)\n",
|
|
||||||
"\n",
|
|
||||||
" state, reward, done, info = env.step(action)\n",
|
|
||||||
" \n",
|
|
||||||
" end_rewards.append(reward == 0)\n",
|
|
||||||
" \n",
|
|
||||||
" return np.sum(end_rewards) / len(end_rewards)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model.save(\"dqn_wordle\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model = DQN.load(\"dqn_wordle\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"print(test(model))"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3 (ipykernel)",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.11.5"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
38
dqn_wordle.py
Normal file
38
dqn_wordle.py
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
import gym
|
||||||
|
import sys
|
||||||
|
from stable_baselines3 import DQN
|
||||||
|
from stable_baselines3.common.env_util import make_vec_env
|
||||||
|
import wordle_gym
|
||||||
|
import numpy as np
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
def train (model, env, total_timesteps = 100000):
|
||||||
|
model.learn(total_timesteps=total_timesteps, progress_bar=True)
|
||||||
|
model.save("dqn_wordle")
|
||||||
|
|
||||||
|
def test(model, env, test_num=1000):
|
||||||
|
|
||||||
|
total_correct = 0
|
||||||
|
|
||||||
|
for i in tqdm(range(test_num)):
|
||||||
|
|
||||||
|
model = DQN.load("dqn_wordle")
|
||||||
|
|
||||||
|
env = gym.make("wordle-v0")
|
||||||
|
obs = env.reset()
|
||||||
|
done = False
|
||||||
|
while not done:
|
||||||
|
action, _states = model.predict(obs)
|
||||||
|
obs, rewards, done, info = env.step(action)
|
||||||
|
|
||||||
|
return total_correct / test_num
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
env = gym.make("wordle-v0")
|
||||||
|
model = DQN("MlpPolicy", env, verbose=0)
|
||||||
|
print(env)
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
train(model, env, total_timesteps=500000)
|
||||||
|
print(test(model, env))
|
9
wordle_gym/__init__.py
Normal file
9
wordle_gym/__init__.py
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
from gym.envs.registration import register
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="wordle-v0", entry_point="wordle_gym.envs.wordle_env:WordleEnv",
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="wordle-alpha-v0", entry_point="wordle_gym.envs.wordle_alpha_env:WordleEnv",
|
||||||
|
)
|
0
wordle_gym/envs/__init__.py
Normal file
0
wordle_gym/envs/__init__.py
Normal file
15
wordle_gym/envs/strategies/base.py
Normal file
15
wordle_gym/envs/strategies/base.py
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
from enum import Enum
|
||||||
|
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
class StrategyType(Enum):
|
||||||
|
RANDOM = 1
|
||||||
|
ELIMINATION = 2
|
||||||
|
PROBABILITY = 3
|
||||||
|
|
||||||
|
class Strategy:
|
||||||
|
def __init__(self, type: StrategyType):
|
||||||
|
self.type = type
|
||||||
|
|
||||||
|
def get_best_word(self, guesses: List[List[str]], state: List[List[int]]):
|
||||||
|
raise NotImplementedError("Strategy.get_best_word() not implemented")
|
2
wordle_gym/envs/strategies/elimination.py
Normal file
2
wordle_gym/envs/strategies/elimination.py
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
def get_best_word(state):
|
||||||
|
|
20
wordle_gym/envs/strategies/probabilistic.py
Normal file
20
wordle_gym/envs/strategies/probabilistic.py
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
from random import sample
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from base import Strategy
|
||||||
|
from base import StrategyType
|
||||||
|
|
||||||
|
from utils import freq
|
||||||
|
|
||||||
|
class Random(Strategy):
|
||||||
|
def __init__(self):
|
||||||
|
self.words = freq.get_5_letter_word_freqs()
|
||||||
|
super().__init__(StrategyType.RANDOM)
|
||||||
|
|
||||||
|
def get_best_word(self, state: List[List[int]]):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
r = Random()
|
||||||
|
print(r.get_best_word([]))
|
29
wordle_gym/envs/strategies/rand.py
Normal file
29
wordle_gym/envs/strategies/rand.py
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
from random import sample
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from base import Strategy
|
||||||
|
from base import StrategyType
|
||||||
|
|
||||||
|
from utils import freq
|
||||||
|
|
||||||
|
class Random(Strategy):
|
||||||
|
def __init__(self):
|
||||||
|
self.words = freq.get_5_letter_word_freqs()
|
||||||
|
super().__init__(StrategyType.RANDOM)
|
||||||
|
|
||||||
|
def get_best_word(self, guesses: List[List[str]], state: List[List[int]]):
|
||||||
|
correct_letters = []
|
||||||
|
regex = ""
|
||||||
|
for g, s in zip(guesses, state):
|
||||||
|
for c, s in zip(g, s):
|
||||||
|
if s == 2:
|
||||||
|
correct_letters.append(c)
|
||||||
|
regex += c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
r = Random()
|
||||||
|
print(r.get_best_word([]))
|
27
wordle_gym/envs/strategies/utils/freq.py
Normal file
27
wordle_gym/envs/strategies/utils/freq.py
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
from os import path
|
||||||
|
|
||||||
|
def get_5_letter_word_freqs():
|
||||||
|
"""
|
||||||
|
Returns a list of words with 5 letters.
|
||||||
|
"""
|
||||||
|
FILEPATH = path.join(path.dirname(path.abspath(__file__)), "data/norvig.txt")
|
||||||
|
lines = read_file(FILEPATH)
|
||||||
|
return {k:v for k, v in get_freq(lines).items() if len(k) == 5}
|
||||||
|
|
||||||
|
|
||||||
|
def read_file(filename):
|
||||||
|
"""
|
||||||
|
Reads a file and returns a list of words and frequencies
|
||||||
|
"""
|
||||||
|
with open(filename, 'r') as f:
|
||||||
|
return f.readlines()
|
||||||
|
|
||||||
|
|
||||||
|
def get_freq(lines):
|
||||||
|
"""
|
||||||
|
Returns a dictionary of words and their frequencies
|
||||||
|
"""
|
||||||
|
freqs = {}
|
||||||
|
for word, freq in map(lambda x: x.split("\t"), lines):
|
||||||
|
freqs[word] = int(freq)
|
||||||
|
return freqs
|
131
wordle_gym/envs/wordle_env.py
Normal file
131
wordle_gym/envs/wordle_env.py
Normal file
@@ -0,0 +1,131 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
import gym
|
||||||
|
from gym import error, spaces, utils
|
||||||
|
from gym.utils import seeding
|
||||||
|
|
||||||
|
from enum import Enum
|
||||||
|
from collections import Counter
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
WORD_LENGTH = 5
|
||||||
|
TOTAL_GUESSES = 6
|
||||||
|
SOLUTION_PATH = "../words/solution.csv"
|
||||||
|
VALID_WORDS_PATH = "../words/guess.csv"
|
||||||
|
|
||||||
|
class LetterState(Enum):
|
||||||
|
ABSENT = 0
|
||||||
|
PRESENT = 1
|
||||||
|
CORRECT_POSITION = 2
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv(gym.Env):
|
||||||
|
metadata = {"render.modes": ["human"]}
|
||||||
|
|
||||||
|
def _current_path(self):
|
||||||
|
return os.path.dirname(os.path.abspath(__file__))
|
||||||
|
|
||||||
|
def _read_solutions(self):
|
||||||
|
return open(os.path.join(self._current_path(), SOLUTION_PATH)).read().splitlines()
|
||||||
|
|
||||||
|
def _get_valid_words(self):
|
||||||
|
words = []
|
||||||
|
for word in open(os.path.join(self._current_path(), VALID_WORDS_PATH)).read().splitlines():
|
||||||
|
words.append((word, Counter(word)))
|
||||||
|
return words
|
||||||
|
|
||||||
|
def get_valid(self):
|
||||||
|
return self._valid_words
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self._solutions = self._read_solutions()
|
||||||
|
self._valid_words = self._get_valid_words()
|
||||||
|
self.action_space = spaces.Discrete(len(self._valid_words))
|
||||||
|
self.observation_space = spaces.MultiDiscrete([3] * TOTAL_GUESSES * WORD_LENGTH)
|
||||||
|
np.random.seed(0)
|
||||||
|
self.reset()
|
||||||
|
|
||||||
|
def _check_guess(self, guess, guess_counter):
|
||||||
|
c = guess_counter & self.solution_ct
|
||||||
|
result = []
|
||||||
|
correct = True
|
||||||
|
reward = 0
|
||||||
|
for i, char in enumerate(guess):
|
||||||
|
if c.get(char, 0) > 0:
|
||||||
|
if self.solution[i] == char:
|
||||||
|
result.append(2)
|
||||||
|
reward += 2
|
||||||
|
else:
|
||||||
|
result.append(1)
|
||||||
|
correct = False
|
||||||
|
reward += 1
|
||||||
|
c[char] -= 1
|
||||||
|
else:
|
||||||
|
result.append(0)
|
||||||
|
correct = False
|
||||||
|
return result, correct, reward
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
"""
|
||||||
|
action: index of word in valid_words
|
||||||
|
|
||||||
|
returns:
|
||||||
|
observation: (TOTAL_GUESSES, WORD_LENGTH)
|
||||||
|
reward: 0 if incorrect, 1 if correct, -1 if game over w/o final answer being obtained
|
||||||
|
done: True if game over, w/ or w/o correct answer
|
||||||
|
additional_info: empty
|
||||||
|
"""
|
||||||
|
guess, guess_counter = self._valid_words[action]
|
||||||
|
if guess in self.guesses:
|
||||||
|
return self.obs, -1, False, {}
|
||||||
|
self.guesses.append(guess)
|
||||||
|
result, correct, reward = self._check_guess(guess, guess_counter)
|
||||||
|
done = False
|
||||||
|
|
||||||
|
for i in range(self.guess_no*WORD_LENGTH, self.guess_no*WORD_LENGTH + WORD_LENGTH):
|
||||||
|
self.obs[i] = result[i - self.guess_no*WORD_LENGTH]
|
||||||
|
|
||||||
|
self.guess_no += 1
|
||||||
|
if correct:
|
||||||
|
done = True
|
||||||
|
reward = 1200
|
||||||
|
if self.guess_no == TOTAL_GUESSES:
|
||||||
|
done = True
|
||||||
|
if not correct:
|
||||||
|
reward = -15
|
||||||
|
return self.obs, reward, done, {}
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
self.solution = self._solutions[np.random.randint(len(self._solutions))]
|
||||||
|
self.solution_ct = Counter(self.solution)
|
||||||
|
self.guess_no = 0
|
||||||
|
self.guesses = []
|
||||||
|
self.obs = np.zeros((TOTAL_GUESSES * WORD_LENGTH, ))
|
||||||
|
return self.obs
|
||||||
|
|
||||||
|
def render(self, mode="human"):
|
||||||
|
m = {
|
||||||
|
0: "⬜",
|
||||||
|
1: "🟨",
|
||||||
|
2: "🟩"
|
||||||
|
}
|
||||||
|
print("Solution:", self.solution)
|
||||||
|
for g, o in zip(self.guesses, np.reshape(self.obs, (TOTAL_GUESSES, WORD_LENGTH))):
|
||||||
|
o_n = "".join(map(lambda x: m[x], o))
|
||||||
|
print(g, o_n)
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
env = WordleEnv()
|
||||||
|
print(env.action_space)
|
||||||
|
print(env.observation_space)
|
||||||
|
print(env.solution)
|
||||||
|
print(env.step(0))
|
||||||
|
print(env.step(0))
|
||||||
|
print(env.step(0))
|
||||||
|
print(env.step(0))
|
||||||
|
print(env.step(0))
|
||||||
|
print(env.step(0))
|
Reference in New Issue
Block a user