module replaces processing

This commit is contained in:
Arthur Lu 2021-10-30 03:11:10 +00:00
parent bd87111e08
commit d798bfe7d2
2 changed files with 0 additions and 189 deletions

View File

@ -1,188 +0,0 @@
import numpy as np
from tra_analysis import Analysis as an
from data import pull_new_tba_matches, push_metric, load_metric
import signal
def simplestats(data_test):
signal.signal(signal.SIGINT, signal.SIG_IGN)
data = np.array(data_test[3])
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
test = data_test[2]
if test == "basic_stats":
return an.basic_stats(data)
if test == "historical_analysis":
return an.histo_analysis([ranges, data])
if test == "regression_linear":
return an.regression(ranges, data, ['lin'])
if test == "regression_logarithmic":
return an.regression(ranges, data, ['log'])
if test == "regression_exponential":
return an.regression(ranges, data, ['exp'])
if test == "regression_polynomial":
return an.regression(ranges, data, ['ply'])
if test == "regression_sigmoidal":
return an.regression(ranges, data, ['sig'])
def matchloop(client, competition, data, tests, exec_threads):
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
class AutoVivification(dict):
def __getitem__(self, item):
try:
return dict.__getitem__(self, item)
except KeyError:
value = self[item] = type(self)()
return value
input_vector = []
return_vector = AutoVivification()
for team in data:
for variable in data[team]:
if variable in tests:
for test in tests[variable]:
input_vector.append((team, variable, test, data[team][variable]))
result_filtered = exec_threads.map(simplestats, input_vector)
i = 0
result_filtered = list(result_filtered)
for result in result_filtered:
filtered = input_vector[i][2]
try:
short = short_mapping[filtered]
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result[short]
except KeyError: # not in mapping
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result
i += 1
return return_vector
def metricloop(client, competition, data, metrics): # listener based metrics update
elo_N = metrics["elo"]["N"]
elo_K = metrics["elo"]["K"]
matches = data
#matches = pull_new_tba_matches(tbakey, competition, timestamp)
red = {}
blu = {}
for match in matches:
red = load_metric(client, competition, match, "red", metrics)
blu = load_metric(client, competition, match, "blue", metrics)
elo_red_total = 0
elo_blu_total = 0
gl2_red_score_total = 0
gl2_blu_score_total = 0
gl2_red_rd_total = 0
gl2_blu_rd_total = 0
gl2_red_vol_total = 0
gl2_blu_vol_total = 0
for team in red:
elo_red_total += red[team]["elo"]["score"]
gl2_red_score_total += red[team]["gl2"]["score"]
gl2_red_rd_total += red[team]["gl2"]["rd"]
gl2_red_vol_total += red[team]["gl2"]["vol"]
for team in blu:
elo_blu_total += blu[team]["elo"]["score"]
gl2_blu_score_total += blu[team]["gl2"]["score"]
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
red_elo = {"score": elo_red_total / len(red)}
blu_elo = {"score": elo_blu_total / len(blu)}
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
if match["winner"] == "red":
observations = {"red": 1, "blu": 0}
elif match["winner"] == "blue":
observations = {"red": 0, "blu": 1}
else:
observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
for team in red:
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
for team in blu:
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
temp_vector = {}
temp_vector.update(red)
temp_vector.update(blu)
push_metric(client, competition, temp_vector)
def pitloop(client, competition, pit, tests):
return_vector = {}
for team in pit:
for variable in pit[team]:
if variable in tests:
if not variable in return_vector:
return_vector[variable] = []
return_vector[variable].append(pit[team][variable])
return return_vector

View File

@ -165,7 +165,6 @@ import zmq
from interface import splash, log, ERR, INF, stdout, stderr
from data import get_previous_time, set_current_time, get_database_config, set_database_config, check_new_database_matches
from module import Match, Metric, Pit
#from processing import matchloop, metricloop, pitloop
config_path = "config.json"
sample_json = """{