mirror of
https://github.com/titanscouting/tra-superscript.git
synced 2025-01-02 20:51:22 +00:00
Merge service-dev changes with master (#24)
* added config.json removed old config files Signed-off-by: Arthur <learthurgo@gmail.com> * superscript.py v 0.0.6.000 Signed-off-by: Arthur <learthurgo@gmail.com> * changed data.py Signed-off-by: Arthur <learthurgo@gmail.com> * changes to config.json Signed-off-by: Arthur <learthurgo@gmail.com> * removed cells from visualize_pit.py Signed-off-by: Arthur <learthurgo@gmail.com> * more changes to visualize_pit.py Signed-off-by: Arthur <learthurgo@gmail.com> * added analysis-master/metrics/__pycache__ to git ignore moved pit configs in config.json to the borrom superscript.py v 0.0.6.001 Signed-off-by: Arthur <learthurgo@gmail.com> * removed old database key Signed-off-by: Arthur <learthurgo@gmail.com> * adjusted config files Signed-off-by: Arthur <learthurgo@gmail.com> * Delete config-pop.json * fixed .gitignore Signed-off-by: Arthur <learthurgo@gmail.com> * analysis.py 1.2.1.003 added team kv pair to config.json Signed-off-by: Arthur <learthurgo@gmail.com> * superscript.py v 0.0.6.002 Signed-off-by: Arthur <learthurgo@gmail.com> * finished app.py API made minute changes to parentheses use in various packages Signed-off-by: Arthur Lu <learthurgo@gmail.com> * bug fixes in app.py Signed-off-by: Arthur Lu <learthurgo@gmail.com> * bug fixes in app.py Signed-off-by: Arthur Lu <learthurgo@gmail.com> * made changes to .gitignore Signed-off-by: Arthur Lu <learthurgo@gmail.com> * made changes to .gitignore Signed-off-by: Arthur Lu <learthurgo@gmail.com> * deleted a __pycache__ folder from metrics Signed-off-by: Arthur Lu <learthurgo@gmail.com> * more changes to .gitignore Signed-off-by: Arthur Lu <learthurgo@gmail.com> * additions to app.py Signed-off-by: Arthur Lu <learthurgo@gmail.com> * renamed app.py to api.py Signed-off-by: Arthur Lu <learthurgo@gmail.com> * removed extranneous files Signed-off-by: Arthur Lu <learthurgo@gmail.com> * renamed api.py to tra.py removed rest api calls from tra.py * renamed api.py to tra.py removed rest api calls from tra.py Signed-off-by: Arthur Lu <learthurgo@gmail.com> * removed flask import from tra.py Signed-off-by: Arthur Lu <learthurgo@gmail.com> * changes to devcontainer.json Signed-off-by: Arthur Lu <learthurgo@gmail.com> * fixed unit tests to be correct removed some tests regressions because of potential function overflow removed trueskill unit test because of slight deviation chance Signed-off-by: Arthur Lu <learthurgo@gmail.com>
This commit is contained in:
parent
fb64a23e6a
commit
5aae889fd7
Binary file not shown.
45
config.json
Normal file
45
config.json
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
{
|
||||||
|
"team": "",
|
||||||
|
"competition": "",
|
||||||
|
"key":{
|
||||||
|
"database":"",
|
||||||
|
"tba":""
|
||||||
|
},
|
||||||
|
"statistics":{
|
||||||
|
"match":{
|
||||||
|
"balls-blocked":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
|
"balls-collected":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
|
"balls-lower-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
|
"balls-lower-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
|
"balls-started":["basic_stats","historical_analyss","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
|
"balls-upper-teleop":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"],
|
||||||
|
"balls-upper-auto":["basic_stats","historical_analysis","regression_linear","regression_logarithmic","regression_exponential","regression_polynomial","regression_sigmoidal"]
|
||||||
|
|
||||||
|
},
|
||||||
|
"metric":{
|
||||||
|
"elo":{
|
||||||
|
"score":1500,
|
||||||
|
"N":400,
|
||||||
|
"K":24
|
||||||
|
},
|
||||||
|
"gl2":{
|
||||||
|
"score":1500,
|
||||||
|
"rd":250,
|
||||||
|
"vol":0.06
|
||||||
|
},
|
||||||
|
"ts":{
|
||||||
|
"mu":25,
|
||||||
|
"sigma":8.33
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"pit":{
|
||||||
|
"wheel-mechanism":true,
|
||||||
|
"low-balls":true,
|
||||||
|
"high-balls":true,
|
||||||
|
"wheel-success":true,
|
||||||
|
"strategic-focus":true,
|
||||||
|
"climb-mechanism":true,
|
||||||
|
"attitude":true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -1 +0,0 @@
|
|||||||
2020ilch
|
|
@ -1,2 +0,0 @@
|
|||||||
mongodb+srv://api-user-new:titanscout2022@2022-scouting-4vfuu.mongodb.net/test?authSource=admin&replicaSet=2022-scouting-shard-0&readPreference=primary&appname=MongoDB%20Compass&ssl=true
|
|
||||||
UDvKmPjPRfwwUdDX1JxbmkyecYBJhCtXeyVk9vmO2i7K0Zn4wqQPMfzuEINXJ7e5
|
|
@ -1,14 +0,0 @@
|
|||||||
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
|
||||||
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
|
||||||
balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
|
||||||
balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
|
||||||
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
|
||||||
balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
|
||||||
balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
|
||||||
wheel-mechanism
|
|
||||||
low-balls
|
|
||||||
high-balls
|
|
||||||
wheel-success
|
|
||||||
strategic-focus
|
|
||||||
climb-mechanism
|
|
||||||
attitude
|
|
51
data.py
51
data.py
@ -8,7 +8,7 @@ def pull_new_tba_matches(apikey, competition, cutoff):
|
|||||||
x=requests.get("https://www.thebluealliance.com/api/v3/event/"+competition+"/matches/simple", headers={"X-TBA-Auth_Key":api_key})
|
x=requests.get("https://www.thebluealliance.com/api/v3/event/"+competition+"/matches/simple", headers={"X-TBA-Auth_Key":api_key})
|
||||||
out = []
|
out = []
|
||||||
for i in x.json():
|
for i in x.json():
|
||||||
if (i["actual_time"] != None and i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm"):
|
if i["actual_time"] != None and i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm":
|
||||||
out.append({"match" : i['match_number'], "blue" : list(map(lambda x: int(x[3:]), i['alliances']['blue']['team_keys'])), "red" : list(map(lambda x: int(x[3:]), i['alliances']['red']['team_keys'])), "winner": i["winning_alliance"]})
|
out.append({"match" : i['match_number'], "blue" : list(map(lambda x: int(x[3:]), i['alliances']['blue']['team_keys'])), "red" : list(map(lambda x: int(x[3:]), i['alliances']['red']['team_keys'])), "winner": i["winning_alliance"]})
|
||||||
return out
|
return out
|
||||||
|
|
||||||
@ -34,17 +34,6 @@ def get_team_metrics_data(apikey, competition, team_num):
|
|||||||
mdata = db.team_metrics
|
mdata = db.team_metrics
|
||||||
return mdata.find_one({"competition" : competition, "team": team_num})
|
return mdata.find_one({"competition" : competition, "team": team_num})
|
||||||
|
|
||||||
def unkeyify_2l(layered_dict):
|
|
||||||
out = {}
|
|
||||||
for i in layered_dict.keys():
|
|
||||||
add = []
|
|
||||||
sortkey = []
|
|
||||||
for j in layered_dict[i].keys():
|
|
||||||
add.append([j,layered_dict[i][j]])
|
|
||||||
add.sort(key = lambda x: x[0])
|
|
||||||
out[i] = list(map(lambda x: x[1], add))
|
|
||||||
return out
|
|
||||||
|
|
||||||
def get_match_data_formatted(apikey, competition):
|
def get_match_data_formatted(apikey, competition):
|
||||||
client = pymongo.MongoClient(apikey)
|
client = pymongo.MongoClient(apikey)
|
||||||
db = client.data_scouting
|
db = client.data_scouting
|
||||||
@ -58,6 +47,19 @@ def get_match_data_formatted(apikey, competition):
|
|||||||
pass
|
pass
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
def get_metrics_data_formatted(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.teamlist
|
||||||
|
x=mdata.find_one({"competition":competition})
|
||||||
|
out = {}
|
||||||
|
for i in x:
|
||||||
|
try:
|
||||||
|
out[int(i)] = d.get_team_metrics_data(apikey, competition, int(i))
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return out
|
||||||
|
|
||||||
def get_pit_data_formatted(apikey, competition):
|
def get_pit_data_formatted(apikey, competition):
|
||||||
client = pymongo.MongoClient(apikey)
|
client = pymongo.MongoClient(apikey)
|
||||||
db = client.data_scouting
|
db = client.data_scouting
|
||||||
@ -71,6 +73,20 @@ def get_pit_data_formatted(apikey, competition):
|
|||||||
pass
|
pass
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
def get_pit_variable_data(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_processing
|
||||||
|
mdata = db.team_pit
|
||||||
|
out = {}
|
||||||
|
return mdata.find()
|
||||||
|
|
||||||
|
def get_pit_variable_formatted(apikey, competition):
|
||||||
|
temp = get_pit_variable_data(apikey, competition)
|
||||||
|
out = {}
|
||||||
|
for i in temp:
|
||||||
|
out[i["variable"]] = i["data"]
|
||||||
|
return out
|
||||||
|
|
||||||
def push_team_tests_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_tests"):
|
def push_team_tests_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_tests"):
|
||||||
client = pymongo.MongoClient(apikey)
|
client = pymongo.MongoClient(apikey)
|
||||||
db = client[dbname]
|
db = client[dbname]
|
||||||
@ -100,3 +116,14 @@ def set_analysis_flags(apikey, flag, data):
|
|||||||
db = client.data_processing
|
db = client.data_processing
|
||||||
mdata = db.flags
|
mdata = db.flags
|
||||||
return mdata.replace_one({flag:{"$exists":True}}, data, True)
|
return mdata.replace_one({flag:{"$exists":True}}, data, True)
|
||||||
|
|
||||||
|
def unkeyify_2l(layered_dict):
|
||||||
|
out = {}
|
||||||
|
for i in layered_dict.keys():
|
||||||
|
add = []
|
||||||
|
sortkey = []
|
||||||
|
for j in layered_dict[i].keys():
|
||||||
|
add.append([j,layered_dict[i][j]])
|
||||||
|
add.sort(key = lambda x: x[0])
|
||||||
|
out[i] = list(map(lambda x: x[1], add))
|
||||||
|
return out
|
@ -1,59 +0,0 @@
|
|||||||
import data as d
|
|
||||||
from analysis import analysis as an
|
|
||||||
import pymongo
|
|
||||||
import operator
|
|
||||||
|
|
||||||
def load_config(file):
|
|
||||||
config_vector = {}
|
|
||||||
file = an.load_csv(file)
|
|
||||||
for line in file[1:]:
|
|
||||||
config_vector[line[0]] = line[1:]
|
|
||||||
|
|
||||||
return (file[0][0], config_vector)
|
|
||||||
|
|
||||||
def get_metrics_processed_formatted(apikey, competition):
|
|
||||||
client = pymongo.MongoClient(apikey)
|
|
||||||
db = client.data_scouting
|
|
||||||
mdata = db.teamlist
|
|
||||||
x=mdata.find_one({"competition":competition})
|
|
||||||
out = {}
|
|
||||||
for i in x:
|
|
||||||
try:
|
|
||||||
out[int(i)] = d.get_team_metrics_data(apikey, competition, int(i))
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
return out
|
|
||||||
|
|
||||||
def main():
|
|
||||||
|
|
||||||
apikey = an.load_csv("keys.txt")[0][0]
|
|
||||||
tbakey = an.load_csv("keys.txt")[1][0]
|
|
||||||
|
|
||||||
competition, config = load_config("config.csv")
|
|
||||||
|
|
||||||
metrics = get_metrics_processed_formatted(apikey, competition)
|
|
||||||
|
|
||||||
elo = {}
|
|
||||||
gl2 = {}
|
|
||||||
|
|
||||||
for team in metrics:
|
|
||||||
|
|
||||||
elo[team] = metrics[team]["metrics"]["elo"]["score"]
|
|
||||||
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
|
|
||||||
|
|
||||||
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
|
|
||||||
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
|
|
||||||
|
|
||||||
for team in elo:
|
|
||||||
|
|
||||||
print("teams sorted by elo:")
|
|
||||||
print("" + str(team) + " | " + str(elo[team]))
|
|
||||||
|
|
||||||
print("*"*25)
|
|
||||||
|
|
||||||
for team in gl2:
|
|
||||||
|
|
||||||
print("teams sorted by glicko2:")
|
|
||||||
print("" + str(team) + " | " + str(gl2[team]))
|
|
||||||
|
|
||||||
main()
|
|
349
superscript.py
349
superscript.py
@ -3,10 +3,27 @@
|
|||||||
# Notes:
|
# Notes:
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "0.0.5.002"
|
__version__ = "0.0.6.002"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
0.0.6.002:
|
||||||
|
- integrated get_team_rankings.py as get_team_metrics() function
|
||||||
|
- integrated visualize_pit.py as graph_pit_histogram() function
|
||||||
|
0.0.6.001:
|
||||||
|
- bug fixes with analysis.Metric() calls
|
||||||
|
- modified metric functions to use config.json defined default values
|
||||||
|
0.0.6.000:
|
||||||
|
- removed main function
|
||||||
|
- changed load_config function
|
||||||
|
- added save_config function
|
||||||
|
- added load_match function
|
||||||
|
- renamed simpleloop to matchloop
|
||||||
|
- moved simplestats function inside matchloop
|
||||||
|
- renamed load_metrics to load_metric
|
||||||
|
- renamed metricsloop to metricloop
|
||||||
|
- split push to database functions amon push_match, push_metric, push_pit
|
||||||
|
- moved
|
||||||
0.0.5.002:
|
0.0.5.002:
|
||||||
- made changes due to refactoring of analysis
|
- made changes due to refactoring of analysis
|
||||||
0.0.5.001:
|
0.0.5.001:
|
||||||
@ -77,101 +94,92 @@ __author__ = (
|
|||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"main",
|
|
||||||
"load_config",
|
"load_config",
|
||||||
"simpleloop",
|
"save_config",
|
||||||
"simplestats",
|
"get_previous_time",
|
||||||
"metricsloop"
|
"load_match",
|
||||||
|
"matchloop",
|
||||||
|
"load_metric",
|
||||||
|
"metricloop",
|
||||||
|
"load_pit",
|
||||||
|
"pitloop",
|
||||||
|
"push_match",
|
||||||
|
"push_metric",
|
||||||
|
"push_pit",
|
||||||
]
|
]
|
||||||
|
|
||||||
# imports:
|
# imports:
|
||||||
|
|
||||||
from analysis import analysis as an
|
from analysis import analysis as an
|
||||||
import data as d
|
import data as d
|
||||||
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from os import system, name
|
from os import system, name
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
import time
|
import time
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
def main():
|
|
||||||
warnings.filterwarnings("ignore")
|
|
||||||
while(True):
|
|
||||||
|
|
||||||
current_time = time.time()
|
|
||||||
print("[OK] time: " + str(current_time))
|
|
||||||
|
|
||||||
start = time.time()
|
|
||||||
config = load_config(Path("config/stats.config"))
|
|
||||||
competition = an.load_csv(Path("config/competition.config"))[0][0]
|
|
||||||
print("[OK] configs loaded")
|
|
||||||
|
|
||||||
apikey = an.load_csv(Path("config/keys.config"))[0][0]
|
|
||||||
tbakey = an.load_csv(Path("config/keys.config"))[1][0]
|
|
||||||
print("[OK] loaded keys")
|
|
||||||
|
|
||||||
previous_time = d.get_analysis_flags(apikey, "latest_update")
|
|
||||||
|
|
||||||
if(previous_time == None):
|
|
||||||
|
|
||||||
d.set_analysis_flags(apikey, "latest_update", 0)
|
|
||||||
previous_time = 0
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
previous_time = previous_time["latest_update"]
|
|
||||||
|
|
||||||
print("[OK] analysis backtimed to: " + str(previous_time))
|
|
||||||
|
|
||||||
print("[OK] loading data")
|
|
||||||
start = time.time()
|
|
||||||
data = d.get_match_data_formatted(apikey, competition)
|
|
||||||
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
|
|
||||||
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
|
||||||
|
|
||||||
print("[OK] running tests")
|
|
||||||
start = time.time()
|
|
||||||
results = simpleloop(data, config)
|
|
||||||
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
|
|
||||||
|
|
||||||
print("[OK] running metrics")
|
|
||||||
start = time.time()
|
|
||||||
metricsloop(tbakey, apikey, competition, previous_time)
|
|
||||||
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
|
|
||||||
|
|
||||||
print("[OK] running pit analysis")
|
|
||||||
start = time.time()
|
|
||||||
pit = pitloop(pit_data, config)
|
|
||||||
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
|
|
||||||
|
|
||||||
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
|
||||||
|
|
||||||
print("[OK] pushing to database")
|
|
||||||
start = time.time()
|
|
||||||
push_to_database(apikey, competition, results, pit)
|
|
||||||
print("[OK] pushed to database in " + str(time.time() - start) + " seconds")
|
|
||||||
|
|
||||||
clear()
|
|
||||||
|
|
||||||
def clear():
|
|
||||||
|
|
||||||
# for windows
|
|
||||||
if name == 'nt':
|
|
||||||
_ = system('cls')
|
|
||||||
|
|
||||||
# for mac and linux(here, os.name is 'posix')
|
|
||||||
else:
|
|
||||||
_ = system('clear')
|
|
||||||
|
|
||||||
def load_config(file):
|
def load_config(file):
|
||||||
|
|
||||||
config_vector = {}
|
config_vector = {}
|
||||||
file = an.load_csv(file)
|
with open(file) as f:
|
||||||
for line in file:
|
config_vector = json.load(f)
|
||||||
config_vector[line[0]] = line[1:]
|
|
||||||
|
|
||||||
return config_vector
|
return config_vector
|
||||||
|
|
||||||
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
def save_config(file, config_vector):
|
||||||
|
|
||||||
|
with open(file) as f:
|
||||||
|
json.dump(config_vector, f)
|
||||||
|
|
||||||
|
def get_previous_time(apikey):
|
||||||
|
|
||||||
|
previous_time = d.get_analysis_flags(apikey, "latest_update")
|
||||||
|
|
||||||
|
if previous_time == None:
|
||||||
|
|
||||||
|
d.set_analysis_flags(apikey, "latest_update", 0)
|
||||||
|
previous_time = 0
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
previous_time = previous_time["latest_update"]
|
||||||
|
|
||||||
|
return previous_time
|
||||||
|
|
||||||
|
def load_match(apikey, competition):
|
||||||
|
|
||||||
|
return d.get_match_data_formatted(apikey, competition)
|
||||||
|
|
||||||
|
def matchloop(apikey, competition, data, tests): # expects 3D array with [Team][Variable][Match]
|
||||||
|
|
||||||
|
def simplestats(data, test):
|
||||||
|
|
||||||
|
data = np.array(data)
|
||||||
|
data = data[np.isfinite(data)]
|
||||||
|
ranges = list(range(len(data)))
|
||||||
|
|
||||||
|
if test == "basic_stats":
|
||||||
|
return an.basic_stats(data)
|
||||||
|
|
||||||
|
if test == "historical_analysis":
|
||||||
|
return an.histo_analysis([ranges, data])
|
||||||
|
|
||||||
|
if test == "regression_linear":
|
||||||
|
return an.regression(ranges, data, ['lin'])
|
||||||
|
|
||||||
|
if test == "regression_logarithmic":
|
||||||
|
return an.regression(ranges, data, ['log'])
|
||||||
|
|
||||||
|
if test == "regression_exponential":
|
||||||
|
return an.regression(ranges, data, ['exp'])
|
||||||
|
|
||||||
|
if test == "regression_polynomial":
|
||||||
|
return an.regression(ranges, data, ['ply'])
|
||||||
|
|
||||||
|
if test == "regression_sigmoidal":
|
||||||
|
return an.regression(ranges, data, ['sig'])
|
||||||
|
|
||||||
return_vector = {}
|
return_vector = {}
|
||||||
for team in data:
|
for team in data:
|
||||||
@ -179,7 +187,7 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
|||||||
for variable in data[team]:
|
for variable in data[team]:
|
||||||
test_vector = {}
|
test_vector = {}
|
||||||
variable_data = data[team][variable]
|
variable_data = data[team][variable]
|
||||||
if(variable in tests):
|
if variable in tests:
|
||||||
for test in tests[variable]:
|
for test in tests[variable]:
|
||||||
test_vector[test] = simplestats(variable_data, test)
|
test_vector[test] = simplestats(variable_data, test)
|
||||||
else:
|
else:
|
||||||
@ -187,49 +195,40 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
|||||||
variable_vector[variable] = test_vector
|
variable_vector[variable] = test_vector
|
||||||
return_vector[team] = variable_vector
|
return_vector[team] = variable_vector
|
||||||
|
|
||||||
return return_vector
|
push_match(apikey, competition, return_vector)
|
||||||
|
|
||||||
def simplestats(data, test):
|
def load_metric(apikey, competition, match, group_name, metrics):
|
||||||
|
|
||||||
data = np.array(data)
|
group = {}
|
||||||
data = data[np.isfinite(data)]
|
|
||||||
ranges = list(range(len(data)))
|
|
||||||
|
|
||||||
if(test == "basic_stats"):
|
for team in match[group_name]:
|
||||||
return an.basic_stats(data)
|
|
||||||
|
|
||||||
if(test == "historical_analysis"):
|
db_data = d.get_team_metrics_data(apikey, competition, team)
|
||||||
return an.histo_analysis([ranges, data])
|
|
||||||
|
|
||||||
if(test == "regression_linear"):
|
if d.get_team_metrics_data(apikey, competition, team) == None:
|
||||||
return an.regression(ranges, data, ['lin'])
|
|
||||||
|
|
||||||
if(test == "regression_logarithmic"):
|
elo = {"score": metrics["elo"]["score"]}
|
||||||
return an.regression(ranges, data, ['log'])
|
gl2 = {"score": metrics["gl2"]["score"], "rd": metrics["gl2"]["rd"], "vol": metrics["gl2"]["vol"]}
|
||||||
|
ts = {"mu": metrics["ts"]["mu"], "sigma": metrics["ts"]["sigma"]}
|
||||||
|
|
||||||
if(test == "regression_exponential"):
|
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||||
return an.regression(ranges, data, ['exp'])
|
|
||||||
|
|
||||||
if(test == "regression_polynomial"):
|
else:
|
||||||
return an.regression(ranges, data, ['ply'])
|
|
||||||
|
|
||||||
if(test == "regression_sigmoidal"):
|
metrics = db_data["metrics"]
|
||||||
return an.regression(ranges, data, ['sig'])
|
|
||||||
|
|
||||||
def push_to_database(apikey, competition, results, pit):
|
elo = metrics["elo"]
|
||||||
|
gl2 = metrics["gl2"]
|
||||||
|
ts = metrics["ts"]
|
||||||
|
|
||||||
for team in results:
|
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||||
|
|
||||||
d.push_team_tests_data(apikey, competition, team, results[team])
|
return group
|
||||||
|
|
||||||
for variable in pit:
|
def metricloop(tbakey, apikey, competition, timestamp, metrics): # listener based metrics update
|
||||||
|
|
||||||
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
elo_N = metrics["elo"]["N"]
|
||||||
|
elo_K = metrics["elo"]["K"]
|
||||||
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
|
|
||||||
|
|
||||||
elo_N = 400
|
|
||||||
elo_K = 24
|
|
||||||
|
|
||||||
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
|
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
|
||||||
|
|
||||||
@ -238,8 +237,8 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
|||||||
|
|
||||||
for match in matches:
|
for match in matches:
|
||||||
|
|
||||||
red = load_metrics(apikey, competition, match, "red")
|
red = load_metric(apikey, competition, match, "red", metrics)
|
||||||
blu = load_metrics(apikey, competition, match, "blue")
|
blu = load_metric(apikey, competition, match, "blue", metrics)
|
||||||
|
|
||||||
elo_red_total = 0
|
elo_red_total = 0
|
||||||
elo_blu_total = 0
|
elo_blu_total = 0
|
||||||
@ -276,11 +275,11 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
|||||||
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
|
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
|
||||||
|
|
||||||
|
|
||||||
if(match["winner"] == "red"):
|
if match["winner"] == "red":
|
||||||
|
|
||||||
observations = {"red": 1, "blu": 0}
|
observations = {"red": 1, "blu": 0}
|
||||||
|
|
||||||
elif(match["winner"] == "blue"):
|
elif match["winner"] == "blue":
|
||||||
|
|
||||||
observations = {"red": 0, "blu": 1}
|
observations = {"red": 0, "blu": 1}
|
||||||
|
|
||||||
@ -288,11 +287,11 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
|||||||
|
|
||||||
observations = {"red": 0.5, "blu": 0.5}
|
observations = {"red": 0.5, "blu": 0.5}
|
||||||
|
|
||||||
red_elo_delta = an.Metrics.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
||||||
blu_elo_delta = an.Metrics.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
||||||
|
|
||||||
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metrics.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
||||||
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metrics.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
||||||
|
|
||||||
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
||||||
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
||||||
@ -317,62 +316,90 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
|
|||||||
temp_vector.update(red)
|
temp_vector.update(red)
|
||||||
temp_vector.update(blu)
|
temp_vector.update(blu)
|
||||||
|
|
||||||
for team in temp_vector:
|
push_metric(apikey, competition, temp_vector)
|
||||||
|
|
||||||
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
|
def load_pit(apikey, competition):
|
||||||
|
|
||||||
def load_metrics(apikey, competition, match, group_name):
|
return d.get_pit_data_formatted(apikey, competition)
|
||||||
|
|
||||||
group = {}
|
def pitloop(apikey, competition, pit, tests):
|
||||||
|
|
||||||
for team in match[group_name]:
|
|
||||||
|
|
||||||
db_data = d.get_team_metrics_data(apikey, competition, team)
|
|
||||||
|
|
||||||
if d.get_team_metrics_data(apikey, competition, team) == None:
|
|
||||||
|
|
||||||
elo = {"score": 1500}
|
|
||||||
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
|
|
||||||
ts = {"mu": 25, "sigma": 25/3}
|
|
||||||
|
|
||||||
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
|
|
||||||
|
|
||||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
metrics = db_data["metrics"]
|
|
||||||
|
|
||||||
elo = metrics["elo"]
|
|
||||||
gl2 = metrics["gl2"]
|
|
||||||
ts = metrics["ts"]
|
|
||||||
|
|
||||||
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
|
||||||
|
|
||||||
return group
|
|
||||||
|
|
||||||
def pitloop(pit, tests):
|
|
||||||
|
|
||||||
return_vector = {}
|
return_vector = {}
|
||||||
for team in pit:
|
for team in pit:
|
||||||
for variable in pit[team]:
|
for variable in pit[team]:
|
||||||
if(variable in tests):
|
if variable in tests:
|
||||||
if(not variable in return_vector):
|
if not variable in return_vector:
|
||||||
return_vector[variable] = []
|
return_vector[variable] = []
|
||||||
return_vector[variable].append(pit[team][variable])
|
return_vector[variable].append(pit[team][variable])
|
||||||
|
|
||||||
return return_vector
|
push_pit(apikey, competition, return_vector)
|
||||||
|
|
||||||
main()
|
def push_match(apikey, competition, results):
|
||||||
|
|
||||||
"""
|
for team in results:
|
||||||
Metrics Defaults:
|
|
||||||
|
|
||||||
elo starting score = 1500
|
d.push_team_tests_data(apikey, competition, team, results[team])
|
||||||
elo N = 400
|
|
||||||
elo K = 24
|
|
||||||
|
|
||||||
gl2 starting score = 1500
|
def push_metric(apikey, competition, metric):
|
||||||
gl2 starting rd = 350
|
|
||||||
gl2 starting vol = 0.06
|
for team in metric:
|
||||||
"""
|
|
||||||
|
d.push_team_metrics_data(apikey, competition, team, metric[team])
|
||||||
|
|
||||||
|
def push_pit(apikey, competition, pit):
|
||||||
|
|
||||||
|
for variable in pit:
|
||||||
|
|
||||||
|
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
||||||
|
|
||||||
|
def get_team_metrics(apikey, tbakey, competition):
|
||||||
|
|
||||||
|
metrics = d.get_metrics_data_formatted(apikey, competition)
|
||||||
|
|
||||||
|
elo = {}
|
||||||
|
gl2 = {}
|
||||||
|
|
||||||
|
for team in metrics:
|
||||||
|
|
||||||
|
elo[team] = metrics[team]["metrics"]["elo"]["score"]
|
||||||
|
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
|
||||||
|
|
||||||
|
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
|
||||||
|
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
|
||||||
|
|
||||||
|
elo_ranked = []
|
||||||
|
|
||||||
|
for team in elo:
|
||||||
|
|
||||||
|
elo_ranked.append({"team": str(team), "elo": str(elo[team])})
|
||||||
|
|
||||||
|
gl2_ranked = []
|
||||||
|
|
||||||
|
for team in gl2:
|
||||||
|
|
||||||
|
gl2_ranked.append({"team": str(team), "gl2": str(gl2[team])})
|
||||||
|
|
||||||
|
return {"elo-ranks": elo_ranked, "glicko2-ranks": gl2_ranked}
|
||||||
|
|
||||||
|
def graph_pit_histogram(apikey, competition, figsize=(80,15)):
|
||||||
|
|
||||||
|
pit = d.get_pit_variable_formatted(apikey, competition)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=figsize)
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
|
||||||
|
for variable in pit:
|
||||||
|
|
||||||
|
ax[i].hist(pit[variable])
|
||||||
|
ax[i].invert_xaxis()
|
||||||
|
|
||||||
|
ax[i].set_xlabel('')
|
||||||
|
ax[i].set_ylabel('Frequency')
|
||||||
|
ax[i].set_title(variable)
|
||||||
|
|
||||||
|
plt.yticks(np.arange(len(pit[variable])))
|
||||||
|
|
||||||
|
i+=1
|
||||||
|
|
||||||
|
plt.show()
|
91
tra.py
Normal file
91
tra.py
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
import json
|
||||||
|
import superscript as su
|
||||||
|
import threading
|
||||||
|
|
||||||
|
__author__ = (
|
||||||
|
"Arthur Lu <learthurgo@gmail.com>",
|
||||||
|
)
|
||||||
|
|
||||||
|
match = False
|
||||||
|
metric = False
|
||||||
|
pit = False
|
||||||
|
|
||||||
|
match_enable = True
|
||||||
|
metric_enable = True
|
||||||
|
pit_enable = True
|
||||||
|
|
||||||
|
config = {}
|
||||||
|
|
||||||
|
def main():
|
||||||
|
|
||||||
|
global match
|
||||||
|
global metric
|
||||||
|
global pit
|
||||||
|
|
||||||
|
global match_enable
|
||||||
|
global metric_enable
|
||||||
|
global pit_enable
|
||||||
|
|
||||||
|
global config
|
||||||
|
config = su.load_config("config.json")
|
||||||
|
|
||||||
|
while(True):
|
||||||
|
|
||||||
|
if match_enable == True and match == False:
|
||||||
|
|
||||||
|
def target():
|
||||||
|
|
||||||
|
apikey = config["key"]["database"]
|
||||||
|
competition = config["competition"]
|
||||||
|
tests = config["statistics"]["match"]
|
||||||
|
|
||||||
|
data = su.load_match(apikey, competition)
|
||||||
|
su.matchloop(apikey, competition, data, tests)
|
||||||
|
|
||||||
|
match = False
|
||||||
|
return
|
||||||
|
|
||||||
|
match = True
|
||||||
|
task = threading.Thread(name = "match", target=target)
|
||||||
|
task.start()
|
||||||
|
|
||||||
|
if metric_enable == True and metric == False:
|
||||||
|
|
||||||
|
def target():
|
||||||
|
|
||||||
|
apikey = config["key"]["database"]
|
||||||
|
tbakey = config["key"]["tba"]
|
||||||
|
competition = config["competition"]
|
||||||
|
metric = config["statistics"]["metric"]
|
||||||
|
|
||||||
|
timestamp = su.get_previous_time(apikey)
|
||||||
|
|
||||||
|
su.metricloop(tbakey, apikey, competition, timestamp, metric)
|
||||||
|
|
||||||
|
metric = False
|
||||||
|
return
|
||||||
|
|
||||||
|
match = True
|
||||||
|
task = threading.Thread(name = "metric", target=target)
|
||||||
|
task.start()
|
||||||
|
|
||||||
|
if pit_enable == True and pit == False:
|
||||||
|
|
||||||
|
def target():
|
||||||
|
|
||||||
|
apikey = config["key"]["database"]
|
||||||
|
competition = config["competition"]
|
||||||
|
tests = config["statistics"]["pit"]
|
||||||
|
|
||||||
|
data = su.load_pit(apikey, competition)
|
||||||
|
su.pitloop(apikey, competition, data, tests)
|
||||||
|
|
||||||
|
pit = False
|
||||||
|
return
|
||||||
|
|
||||||
|
pit = True
|
||||||
|
task = threading.Thread(name = "pit", target=target)
|
||||||
|
task.start()
|
||||||
|
|
||||||
|
task = threading.Thread(name = "main", target=main)
|
||||||
|
task.start()
|
@ -1,59 +0,0 @@
|
|||||||
# To add a new cell, type '# %%'
|
|
||||||
# To add a new markdown cell, type '# %% [markdown]'
|
|
||||||
# %%
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import data as d
|
|
||||||
import pymongo
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
def get_pit_variable_data(apikey, competition):
|
|
||||||
client = pymongo.MongoClient(apikey)
|
|
||||||
db = client.data_processing
|
|
||||||
mdata = db.team_pit
|
|
||||||
out = {}
|
|
||||||
return mdata.find()
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
def get_pit_variable_formatted(apikey, competition):
|
|
||||||
temp = get_pit_variable_data(apikey, competition)
|
|
||||||
out = {}
|
|
||||||
for i in temp:
|
|
||||||
out[i["variable"]] = i["data"]
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
pit = get_pit_variable_formatted("mongodb+srv://api-user-new:titanscout2022@2022-scouting-4vfuu.mongodb.net/test?authSource=admin&replicaSet=2022-scouting-shard-0&readPreference=primary&appname=MongoDB%20Compass&ssl=true", "2020ilch")
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(80,15))
|
|
||||||
|
|
||||||
i = 0
|
|
||||||
|
|
||||||
for variable in pit:
|
|
||||||
|
|
||||||
ax[i].hist(pit[variable])
|
|
||||||
ax[i].invert_xaxis()
|
|
||||||
|
|
||||||
ax[i].set_xlabel('')
|
|
||||||
ax[i].set_ylabel('Frequency')
|
|
||||||
ax[i].set_title(variable)
|
|
||||||
|
|
||||||
plt.yticks(np.arange(len(pit[variable])))
|
|
||||||
|
|
||||||
i+=1
|
|
||||||
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user