mirror of
https://github.com/titanscouting/tra-superscript.git
synced 2025-01-02 12:41:22 +00:00
changed data analysis folder to data-analysis
added egg-info and build folders to git ignore deleted egg-info and build folders
This commit is contained in:
commit
48c69a48e0
BIN
__pycache__/data.cpython-37.pyc
Normal file
BIN
__pycache__/data.cpython-37.pyc
Normal file
Binary file not shown.
1
config/competition.config
Normal file
1
config/competition.config
Normal file
@ -0,0 +1 @@
|
|||||||
|
2020ilch
|
0
config/database.config
Normal file
0
config/database.config
Normal file
2
config/keys.config
Normal file
2
config/keys.config
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
mongodb+srv://api-user-new:titanscout2022@2022-scouting-4vfuu.mongodb.net/test?authSource=admin&replicaSet=2022-scouting-shard-0&readPreference=primary&appname=MongoDB%20Compass&ssl=true
|
||||||
|
UDvKmPjPRfwwUdDX1JxbmkyecYBJhCtXeyVk9vmO2i7K0Zn4wqQPMfzuEINXJ7e5
|
14
config/stats.config
Normal file
14
config/stats.config
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-lower-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-lower-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-started,basic_stats,historical_analyss,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-upper-teleop,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
balls-upper-auto,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal
|
||||||
|
wheel-mechanism
|
||||||
|
low-balls
|
||||||
|
high-balls
|
||||||
|
wheel-success
|
||||||
|
strategic-focus
|
||||||
|
climb-mechanism
|
||||||
|
attitude
|
102
data.py
Normal file
102
data.py
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
import requests
|
||||||
|
import pymongo
|
||||||
|
import pandas as pd
|
||||||
|
import time
|
||||||
|
|
||||||
|
def pull_new_tba_matches(apikey, competition, cutoff):
|
||||||
|
api_key= apikey
|
||||||
|
x=requests.get("https://www.thebluealliance.com/api/v3/event/"+competition+"/matches/simple", headers={"X-TBA-Auth_Key":api_key})
|
||||||
|
out = []
|
||||||
|
for i in x.json():
|
||||||
|
if (i["actual_time"] != None and i["actual_time"]-cutoff >= 0 and i["comp_level"] == "qm"):
|
||||||
|
out.append({"match" : i['match_number'], "blue" : list(map(lambda x: int(x[3:]), i['alliances']['blue']['team_keys'])), "red" : list(map(lambda x: int(x[3:]), i['alliances']['red']['team_keys'])), "winner": i["winning_alliance"]})
|
||||||
|
return out
|
||||||
|
|
||||||
|
def get_team_match_data(apikey, competition, team_num):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.matchdata
|
||||||
|
out = {}
|
||||||
|
for i in mdata.find({"competition" : competition, "team_scouted": team_num}):
|
||||||
|
out[i['match']] = i['data']
|
||||||
|
return pd.DataFrame(out)
|
||||||
|
|
||||||
|
def get_team_pit_data(apikey, competition, team_num):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.pitdata
|
||||||
|
out = {}
|
||||||
|
return mdata.find_one({"competition" : competition, "team_scouted": team_num})["data"]
|
||||||
|
|
||||||
|
def get_team_metrics_data(apikey, competition, team_num):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_processing
|
||||||
|
mdata = db.team_metrics
|
||||||
|
return mdata.find_one({"competition" : competition, "team": team_num})
|
||||||
|
|
||||||
|
def unkeyify_2l(layered_dict):
|
||||||
|
out = {}
|
||||||
|
for i in layered_dict.keys():
|
||||||
|
add = []
|
||||||
|
sortkey = []
|
||||||
|
for j in layered_dict[i].keys():
|
||||||
|
add.append([j,layered_dict[i][j]])
|
||||||
|
add.sort(key = lambda x: x[0])
|
||||||
|
out[i] = list(map(lambda x: x[1], add))
|
||||||
|
return out
|
||||||
|
|
||||||
|
def get_match_data_formatted(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.teamlist
|
||||||
|
x=mdata.find_one({"competition":competition})
|
||||||
|
out = {}
|
||||||
|
for i in x:
|
||||||
|
try:
|
||||||
|
out[int(i)] = unkeyify_2l(get_team_match_data(apikey, competition, int(i)).transpose().to_dict())
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return out
|
||||||
|
|
||||||
|
def get_pit_data_formatted(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.teamlist
|
||||||
|
x=mdata.find_one({"competition":competition})
|
||||||
|
out = {}
|
||||||
|
for i in x:
|
||||||
|
try:
|
||||||
|
out[int(i)] = get_team_pit_data(apikey, competition, int(i))
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return out
|
||||||
|
|
||||||
|
def push_team_tests_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_tests"):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client[dbname]
|
||||||
|
mdata = db[colname]
|
||||||
|
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "data" : data}, True)
|
||||||
|
|
||||||
|
def push_team_metrics_data(apikey, competition, team_num, data, dbname = "data_processing", colname = "team_metrics"):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client[dbname]
|
||||||
|
mdata = db[colname]
|
||||||
|
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "metrics" : data}, True)
|
||||||
|
|
||||||
|
def push_team_pit_data(apikey, competition, variable, data, dbname = "data_processing", colname = "team_pit"):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client[dbname]
|
||||||
|
mdata = db[colname]
|
||||||
|
mdata.replace_one({"competition" : competition, "variable": variable}, {"competition" : competition, "variable" : variable, "data" : data}, True)
|
||||||
|
|
||||||
|
def get_analysis_flags(apikey, flag):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_processing
|
||||||
|
mdata = db.flags
|
||||||
|
return mdata.find_one({flag:{"$exists":True}})
|
||||||
|
|
||||||
|
def set_analysis_flags(apikey, flag, data):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_processing
|
||||||
|
mdata = db.flags
|
||||||
|
return mdata.replace_one({flag:{"$exists":True}}, data, True)
|
59
get_team_rankings.py
Normal file
59
get_team_rankings.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
import data as d
|
||||||
|
from analysis import analysis as an
|
||||||
|
import pymongo
|
||||||
|
import operator
|
||||||
|
|
||||||
|
def load_config(file):
|
||||||
|
config_vector = {}
|
||||||
|
file = an.load_csv(file)
|
||||||
|
for line in file[1:]:
|
||||||
|
config_vector[line[0]] = line[1:]
|
||||||
|
|
||||||
|
return (file[0][0], config_vector)
|
||||||
|
|
||||||
|
def get_metrics_processed_formatted(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_scouting
|
||||||
|
mdata = db.teamlist
|
||||||
|
x=mdata.find_one({"competition":competition})
|
||||||
|
out = {}
|
||||||
|
for i in x:
|
||||||
|
try:
|
||||||
|
out[int(i)] = d.get_team_metrics_data(apikey, competition, int(i))
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return out
|
||||||
|
|
||||||
|
def main():
|
||||||
|
|
||||||
|
apikey = an.load_csv("keys.txt")[0][0]
|
||||||
|
tbakey = an.load_csv("keys.txt")[1][0]
|
||||||
|
|
||||||
|
competition, config = load_config("config.csv")
|
||||||
|
|
||||||
|
metrics = get_metrics_processed_formatted(apikey, competition)
|
||||||
|
|
||||||
|
elo = {}
|
||||||
|
gl2 = {}
|
||||||
|
|
||||||
|
for team in metrics:
|
||||||
|
|
||||||
|
elo[team] = metrics[team]["metrics"]["elo"]["score"]
|
||||||
|
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
|
||||||
|
|
||||||
|
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
|
||||||
|
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
|
||||||
|
|
||||||
|
for team in elo:
|
||||||
|
|
||||||
|
print("teams sorted by elo:")
|
||||||
|
print("" + str(team) + " | " + str(elo[team]))
|
||||||
|
|
||||||
|
print("*"*25)
|
||||||
|
|
||||||
|
for team in gl2:
|
||||||
|
|
||||||
|
print("teams sorted by glicko2:")
|
||||||
|
print("" + str(team) + " | " + str(gl2[team]))
|
||||||
|
|
||||||
|
main()
|
4
requirements.txt
Normal file
4
requirements.txt
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
requests
|
||||||
|
pymongo
|
||||||
|
pandas
|
||||||
|
dnspython
|
378
superscript.py
Normal file
378
superscript.py
Normal file
@ -0,0 +1,378 @@
|
|||||||
|
# Titan Robotics Team 2022: Superscript Script
|
||||||
|
# Written by Arthur Lu & Jacob Levine
|
||||||
|
# Notes:
|
||||||
|
# setup:
|
||||||
|
|
||||||
|
__version__ = "0.0.5.002"
|
||||||
|
|
||||||
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
|
__changelog__ = """changelog:
|
||||||
|
0.0.5.002:
|
||||||
|
- made changes due to refactoring of analysis
|
||||||
|
0.0.5.001:
|
||||||
|
- text fixes
|
||||||
|
- removed matplotlib requirement
|
||||||
|
0.0.5.000:
|
||||||
|
- improved user interface
|
||||||
|
0.0.4.002:
|
||||||
|
- removed unessasary code
|
||||||
|
0.0.4.001:
|
||||||
|
- fixed bug where X range for regression was determined before sanitization
|
||||||
|
- better sanitized data
|
||||||
|
0.0.4.000:
|
||||||
|
- fixed spelling issue in __changelog__
|
||||||
|
- addressed nan bug in regression
|
||||||
|
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
|
||||||
|
- fixed errors in metrics computing
|
||||||
|
0.0.3.000:
|
||||||
|
- added analysis to pit data
|
||||||
|
0.0.2.001:
|
||||||
|
- minor stability patches
|
||||||
|
- implemented db syncing for timestamps
|
||||||
|
- fixed bugs
|
||||||
|
0.0.2.000:
|
||||||
|
- finalized testing and small fixes
|
||||||
|
0.0.1.004:
|
||||||
|
- finished metrics implement, trueskill is bugged
|
||||||
|
0.0.1.003:
|
||||||
|
- working
|
||||||
|
0.0.1.002:
|
||||||
|
- started implement of metrics
|
||||||
|
0.0.1.001:
|
||||||
|
- cleaned up imports
|
||||||
|
0.0.1.000:
|
||||||
|
- tested working, can push to database
|
||||||
|
0.0.0.009:
|
||||||
|
- tested working
|
||||||
|
- prints out stats for the time being, will push to database later
|
||||||
|
0.0.0.008:
|
||||||
|
- added data import
|
||||||
|
- removed tba import
|
||||||
|
- finished main method
|
||||||
|
0.0.0.007:
|
||||||
|
- added load_config
|
||||||
|
- optimized simpleloop for readibility
|
||||||
|
- added __all__ entries
|
||||||
|
- added simplestats engine
|
||||||
|
- pending testing
|
||||||
|
0.0.0.006:
|
||||||
|
- fixes
|
||||||
|
0.0.0.005:
|
||||||
|
- imported pickle
|
||||||
|
- created custom database object
|
||||||
|
0.0.0.004:
|
||||||
|
- fixed simpleloop to actually return a vector
|
||||||
|
0.0.0.003:
|
||||||
|
- added metricsloop which is unfinished
|
||||||
|
0.0.0.002:
|
||||||
|
- added simpleloop which is untested until data is provided
|
||||||
|
0.0.0.001:
|
||||||
|
- created script
|
||||||
|
- added analysis, numba, numpy imports
|
||||||
|
"""
|
||||||
|
|
||||||
|
__author__ = (
|
||||||
|
"Arthur Lu <learthurgo@gmail.com>",
|
||||||
|
"Jacob Levine <jlevine@imsa.edu>",
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"main",
|
||||||
|
"load_config",
|
||||||
|
"simpleloop",
|
||||||
|
"simplestats",
|
||||||
|
"metricsloop"
|
||||||
|
]
|
||||||
|
|
||||||
|
# imports:
|
||||||
|
|
||||||
|
from analysis import analysis as an
|
||||||
|
import data as d
|
||||||
|
import numpy as np
|
||||||
|
from os import system, name
|
||||||
|
from pathlib import Path
|
||||||
|
import time
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
def main():
|
||||||
|
warnings.filterwarnings("ignore")
|
||||||
|
while(True):
|
||||||
|
|
||||||
|
current_time = time.time()
|
||||||
|
print("[OK] time: " + str(current_time))
|
||||||
|
|
||||||
|
start = time.time()
|
||||||
|
config = load_config(Path("config/stats.config"))
|
||||||
|
competition = an.load_csv(Path("config/competition.config"))[0][0]
|
||||||
|
print("[OK] configs loaded")
|
||||||
|
|
||||||
|
apikey = an.load_csv(Path("config/keys.config"))[0][0]
|
||||||
|
tbakey = an.load_csv(Path("config/keys.config"))[1][0]
|
||||||
|
print("[OK] loaded keys")
|
||||||
|
|
||||||
|
previous_time = d.get_analysis_flags(apikey, "latest_update")
|
||||||
|
|
||||||
|
if(previous_time == None):
|
||||||
|
|
||||||
|
d.set_analysis_flags(apikey, "latest_update", 0)
|
||||||
|
previous_time = 0
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
previous_time = previous_time["latest_update"]
|
||||||
|
|
||||||
|
print("[OK] analysis backtimed to: " + str(previous_time))
|
||||||
|
|
||||||
|
print("[OK] loading data")
|
||||||
|
start = time.time()
|
||||||
|
data = d.get_match_data_formatted(apikey, competition)
|
||||||
|
pit_data = d.pit = d.get_pit_data_formatted(apikey, competition)
|
||||||
|
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
|
print("[OK] running tests")
|
||||||
|
start = time.time()
|
||||||
|
results = simpleloop(data, config)
|
||||||
|
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
|
print("[OK] running metrics")
|
||||||
|
start = time.time()
|
||||||
|
metricsloop(tbakey, apikey, competition, previous_time)
|
||||||
|
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
|
print("[OK] running pit analysis")
|
||||||
|
start = time.time()
|
||||||
|
pit = pitloop(pit_data, config)
|
||||||
|
print("[OK] finished pit analysis in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
|
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
|
||||||
|
|
||||||
|
print("[OK] pushing to database")
|
||||||
|
start = time.time()
|
||||||
|
push_to_database(apikey, competition, results, pit)
|
||||||
|
print("[OK] pushed to database in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
|
clear()
|
||||||
|
|
||||||
|
def clear():
|
||||||
|
|
||||||
|
# for windows
|
||||||
|
if name == 'nt':
|
||||||
|
_ = system('cls')
|
||||||
|
|
||||||
|
# for mac and linux(here, os.name is 'posix')
|
||||||
|
else:
|
||||||
|
_ = system('clear')
|
||||||
|
|
||||||
|
def load_config(file):
|
||||||
|
config_vector = {}
|
||||||
|
file = an.load_csv(file)
|
||||||
|
for line in file:
|
||||||
|
config_vector[line[0]] = line[1:]
|
||||||
|
|
||||||
|
return config_vector
|
||||||
|
|
||||||
|
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
||||||
|
|
||||||
|
return_vector = {}
|
||||||
|
for team in data:
|
||||||
|
variable_vector = {}
|
||||||
|
for variable in data[team]:
|
||||||
|
test_vector = {}
|
||||||
|
variable_data = data[team][variable]
|
||||||
|
if(variable in tests):
|
||||||
|
for test in tests[variable]:
|
||||||
|
test_vector[test] = simplestats(variable_data, test)
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
variable_vector[variable] = test_vector
|
||||||
|
return_vector[team] = variable_vector
|
||||||
|
|
||||||
|
return return_vector
|
||||||
|
|
||||||
|
def simplestats(data, test):
|
||||||
|
|
||||||
|
data = np.array(data)
|
||||||
|
data = data[np.isfinite(data)]
|
||||||
|
ranges = list(range(len(data)))
|
||||||
|
|
||||||
|
if(test == "basic_stats"):
|
||||||
|
return an.basic_stats(data)
|
||||||
|
|
||||||
|
if(test == "historical_analysis"):
|
||||||
|
return an.histo_analysis([ranges, data])
|
||||||
|
|
||||||
|
if(test == "regression_linear"):
|
||||||
|
return an.regression(ranges, data, ['lin'])
|
||||||
|
|
||||||
|
if(test == "regression_logarithmic"):
|
||||||
|
return an.regression(ranges, data, ['log'])
|
||||||
|
|
||||||
|
if(test == "regression_exponential"):
|
||||||
|
return an.regression(ranges, data, ['exp'])
|
||||||
|
|
||||||
|
if(test == "regression_polynomial"):
|
||||||
|
return an.regression(ranges, data, ['ply'])
|
||||||
|
|
||||||
|
if(test == "regression_sigmoidal"):
|
||||||
|
return an.regression(ranges, data, ['sig'])
|
||||||
|
|
||||||
|
def push_to_database(apikey, competition, results, pit):
|
||||||
|
|
||||||
|
for team in results:
|
||||||
|
|
||||||
|
d.push_team_tests_data(apikey, competition, team, results[team])
|
||||||
|
|
||||||
|
for variable in pit:
|
||||||
|
|
||||||
|
d.push_team_pit_data(apikey, competition, variable, pit[variable])
|
||||||
|
|
||||||
|
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
|
||||||
|
|
||||||
|
elo_N = 400
|
||||||
|
elo_K = 24
|
||||||
|
|
||||||
|
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
|
||||||
|
|
||||||
|
red = {}
|
||||||
|
blu = {}
|
||||||
|
|
||||||
|
for match in matches:
|
||||||
|
|
||||||
|
red = load_metrics(apikey, competition, match, "red")
|
||||||
|
blu = load_metrics(apikey, competition, match, "blue")
|
||||||
|
|
||||||
|
elo_red_total = 0
|
||||||
|
elo_blu_total = 0
|
||||||
|
|
||||||
|
gl2_red_score_total = 0
|
||||||
|
gl2_blu_score_total = 0
|
||||||
|
|
||||||
|
gl2_red_rd_total = 0
|
||||||
|
gl2_blu_rd_total = 0
|
||||||
|
|
||||||
|
gl2_red_vol_total = 0
|
||||||
|
gl2_blu_vol_total = 0
|
||||||
|
|
||||||
|
for team in red:
|
||||||
|
|
||||||
|
elo_red_total += red[team]["elo"]["score"]
|
||||||
|
|
||||||
|
gl2_red_score_total += red[team]["gl2"]["score"]
|
||||||
|
gl2_red_rd_total += red[team]["gl2"]["rd"]
|
||||||
|
gl2_red_vol_total += red[team]["gl2"]["vol"]
|
||||||
|
|
||||||
|
for team in blu:
|
||||||
|
|
||||||
|
elo_blu_total += blu[team]["elo"]["score"]
|
||||||
|
|
||||||
|
gl2_blu_score_total += blu[team]["gl2"]["score"]
|
||||||
|
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
|
||||||
|
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
|
||||||
|
|
||||||
|
red_elo = {"score": elo_red_total / len(red)}
|
||||||
|
blu_elo = {"score": elo_blu_total / len(blu)}
|
||||||
|
|
||||||
|
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
|
||||||
|
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
|
||||||
|
|
||||||
|
|
||||||
|
if(match["winner"] == "red"):
|
||||||
|
|
||||||
|
observations = {"red": 1, "blu": 0}
|
||||||
|
|
||||||
|
elif(match["winner"] == "blue"):
|
||||||
|
|
||||||
|
observations = {"red": 0, "blu": 1}
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
observations = {"red": 0.5, "blu": 0.5}
|
||||||
|
|
||||||
|
red_elo_delta = an.Metrics.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
|
||||||
|
blu_elo_delta = an.Metrics.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
|
||||||
|
|
||||||
|
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metrics.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
|
||||||
|
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metrics.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
|
||||||
|
|
||||||
|
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
|
||||||
|
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
|
||||||
|
|
||||||
|
for team in red:
|
||||||
|
|
||||||
|
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
|
||||||
|
|
||||||
|
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
|
||||||
|
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
|
||||||
|
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
|
||||||
|
|
||||||
|
for team in blu:
|
||||||
|
|
||||||
|
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
|
||||||
|
|
||||||
|
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
|
||||||
|
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
|
||||||
|
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
|
||||||
|
|
||||||
|
temp_vector = {}
|
||||||
|
temp_vector.update(red)
|
||||||
|
temp_vector.update(blu)
|
||||||
|
|
||||||
|
for team in temp_vector:
|
||||||
|
|
||||||
|
d.push_team_metrics_data(apikey, competition, team, temp_vector[team])
|
||||||
|
|
||||||
|
def load_metrics(apikey, competition, match, group_name):
|
||||||
|
|
||||||
|
group = {}
|
||||||
|
|
||||||
|
for team in match[group_name]:
|
||||||
|
|
||||||
|
db_data = d.get_team_metrics_data(apikey, competition, team)
|
||||||
|
|
||||||
|
if d.get_team_metrics_data(apikey, competition, team) == None:
|
||||||
|
|
||||||
|
elo = {"score": 1500}
|
||||||
|
gl2 = {"score": 1500, "rd": 250, "vol": 0.06}
|
||||||
|
ts = {"mu": 25, "sigma": 25/3}
|
||||||
|
|
||||||
|
#d.push_team_metrics_data(apikey, competition, team, {"elo":elo, "gl2":gl2,"trueskill":ts})
|
||||||
|
|
||||||
|
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
metrics = db_data["metrics"]
|
||||||
|
|
||||||
|
elo = metrics["elo"]
|
||||||
|
gl2 = metrics["gl2"]
|
||||||
|
ts = metrics["ts"]
|
||||||
|
|
||||||
|
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
|
||||||
|
|
||||||
|
return group
|
||||||
|
|
||||||
|
def pitloop(pit, tests):
|
||||||
|
|
||||||
|
return_vector = {}
|
||||||
|
for team in pit:
|
||||||
|
for variable in pit[team]:
|
||||||
|
if(variable in tests):
|
||||||
|
if(not variable in return_vector):
|
||||||
|
return_vector[variable] = []
|
||||||
|
return_vector[variable].append(pit[team][variable])
|
||||||
|
|
||||||
|
return return_vector
|
||||||
|
|
||||||
|
main()
|
||||||
|
|
||||||
|
"""
|
||||||
|
Metrics Defaults:
|
||||||
|
|
||||||
|
elo starting score = 1500
|
||||||
|
elo N = 400
|
||||||
|
elo K = 24
|
||||||
|
|
||||||
|
gl2 starting score = 1500
|
||||||
|
gl2 starting rd = 350
|
||||||
|
gl2 starting vol = 0.06
|
||||||
|
"""
|
59
visualize_pit.py
Normal file
59
visualize_pit.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
# To add a new cell, type '# %%'
|
||||||
|
# To add a new markdown cell, type '# %% [markdown]'
|
||||||
|
# %%
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import data as d
|
||||||
|
import pymongo
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def get_pit_variable_data(apikey, competition):
|
||||||
|
client = pymongo.MongoClient(apikey)
|
||||||
|
db = client.data_processing
|
||||||
|
mdata = db.team_pit
|
||||||
|
out = {}
|
||||||
|
return mdata.find()
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def get_pit_variable_formatted(apikey, competition):
|
||||||
|
temp = get_pit_variable_data(apikey, competition)
|
||||||
|
out = {}
|
||||||
|
for i in temp:
|
||||||
|
out[i["variable"]] = i["data"]
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
pit = get_pit_variable_formatted("mongodb+srv://api-user-new:titanscout2022@2022-scouting-4vfuu.mongodb.net/test?authSource=admin&replicaSet=2022-scouting-shard-0&readPreference=primary&appname=MongoDB%20Compass&ssl=true", "2020ilch")
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=(80,15))
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
|
||||||
|
for variable in pit:
|
||||||
|
|
||||||
|
ax[i].hist(pit[variable])
|
||||||
|
ax[i].invert_xaxis()
|
||||||
|
|
||||||
|
ax[i].set_xlabel('')
|
||||||
|
ax[i].set_ylabel('Frequency')
|
||||||
|
ax[i].set_title(variable)
|
||||||
|
|
||||||
|
plt.yticks(np.arange(len(pit[variable])))
|
||||||
|
|
||||||
|
i+=1
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user