mirror of
https://github.com/titanscouting/tra-superscript.git
synced 2025-01-02 12:41:22 +00:00
changed Match module to use current data bindings
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
Former-commit-id: afab67f8ef
This commit is contained in:
parent
f8f8543ea2
commit
0eccc32096
@ -23,89 +23,106 @@ class Match:
|
||||
apikey = None
|
||||
tbakey = None
|
||||
timestamp = None
|
||||
teams = None
|
||||
competition = None
|
||||
|
||||
data = []
|
||||
results = []
|
||||
|
||||
def __init__(self, config, apikey, tbakey, timestamp, teams):
|
||||
def __init__(self, config, apikey, tbakey, timestamp, competition):
|
||||
self.config = config
|
||||
self.apikey = apikey
|
||||
self.tbakey = tbakey
|
||||
self.timestamp = timestamp
|
||||
self.teams = teams
|
||||
self.competition = competition
|
||||
|
||||
def validate_config(self):
|
||||
return True, ""
|
||||
"""
|
||||
if self.config == None:
|
||||
return False, "config cannot be empty"
|
||||
elif self.apikey == None or self.apikey == "":
|
||||
return False, "apikey cannot be empty"
|
||||
elif self.tbakey == None or self.tbakey == "":
|
||||
return False, "tbakey cannot be empty"
|
||||
elif not(self.config["scope"] in ["competition", "season", "none"]):
|
||||
return False, "scope must be one of: (competition, season, none)"
|
||||
elif self.config["agglomeration"] != "none":
|
||||
return False, "agglomeration must be 'none', there are currently no supported Agglomeration methods"
|
||||
elif self.config["tests"] == None:
|
||||
return False, "tests must not be None, it may be empty {}"
|
||||
else:
|
||||
return True, ""
|
||||
"""
|
||||
|
||||
def load_data(self):
|
||||
scope = self.config["scope"]
|
||||
for team in self.teams:
|
||||
competitions = d.get_team_conpetitions(self.apikey, team, scope) # unimplemented
|
||||
for competition in competitions:
|
||||
for variable in self.config["tests"]:
|
||||
match_data = d.get_team_match_data(self.apikey, competition, team, variable) # needs modified implementation
|
||||
variable_tests = self.config["tests"][variable]
|
||||
self.data.append({"team": team, "competition": competition, "variable": variable, "tests": variable_tests, "data": match_data})
|
||||
self.data = d.load_match(self.apikey, self.competition)
|
||||
|
||||
def simplestats(data_test):
|
||||
|
||||
def tests(test_data):
|
||||
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
||||
|
||||
if(test_data["data"] == None):
|
||||
return None
|
||||
|
||||
data = np.array(test_data["data"])
|
||||
data = np.array(data_test[3])
|
||||
data = data[np.isfinite(data)]
|
||||
ranges = list(range(len(data)))
|
||||
|
||||
tests = test_data["tests"]
|
||||
test = data_test[2]
|
||||
|
||||
results = {}
|
||||
if test == "basic_stats":
|
||||
return an.basic_stats(data)
|
||||
|
||||
if "basic_stats" in tests:
|
||||
results["basic_stats"] = an.basic_stats(data)
|
||||
if "historical_analysis" in tests:
|
||||
results["historical_analysis"] = an.histo_analysis([ranges, data])
|
||||
if "regression_linear" in tests:
|
||||
results["regression_linear"] = an.regression(ranges, data, ['lin'])
|
||||
if "regression_logarithmic" in tests:
|
||||
results["regression_logarithmic"] = an.regression(ranges, data, ['log'])
|
||||
if "regression_exponential" in tests:
|
||||
results["regression_exponential"] = an.regression(ranges, data, ['exp'])
|
||||
if "regression_polynomial" in tests:
|
||||
results["regression_polynomial"] = an.regression(ranges, data, ['ply'])
|
||||
if "regression_sigmoidal" in tests:
|
||||
results["regression_sigmoidal"] = an.regression(ranges, data, ['sig'])
|
||||
if test == "historical_analysis":
|
||||
return an.histo_analysis([ranges, data])
|
||||
|
||||
return results
|
||||
if test == "regression_linear":
|
||||
return an.regression(ranges, data, ['lin'])
|
||||
|
||||
if test == "regression_logarithmic":
|
||||
return an.regression(ranges, data, ['log'])
|
||||
|
||||
if test == "regression_exponential":
|
||||
return an.regression(ranges, data, ['exp'])
|
||||
|
||||
if test == "regression_polynomial":
|
||||
return an.regression(ranges, data, ['ply'])
|
||||
|
||||
if test == "regression_sigmoidal":
|
||||
return an.regression(ranges, data, ['sig'])
|
||||
|
||||
def process_data(self, exec_threads):
|
||||
self.results = list(exec_threads.map(self.tests, self.data))
|
||||
|
||||
tests = self.config["tests"]
|
||||
data = self.data
|
||||
|
||||
input_vector = []
|
||||
|
||||
for team in data:
|
||||
|
||||
for variable in data[team]:
|
||||
|
||||
if variable in tests:
|
||||
|
||||
for test in tests[variable]:
|
||||
|
||||
input_vector.append((team, variable, test, data[team][variable]))
|
||||
|
||||
self.data = input_vector
|
||||
self.results = list(exec_threads.map(self.simplestats, self.data))
|
||||
|
||||
def push_results(self):
|
||||
|
||||
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
|
||||
|
||||
class AutoVivification(dict):
|
||||
def __getitem__(self, item):
|
||||
try:
|
||||
return dict.__getitem__(self, item)
|
||||
except KeyError:
|
||||
value = self[item] = type(self)()
|
||||
return value
|
||||
|
||||
result_filtered = self.results
|
||||
input_vector = self.data
|
||||
|
||||
return_vector = AutoVivification()
|
||||
|
||||
i = 0
|
||||
for result in self.results:
|
||||
for variable in result:
|
||||
if variable in short_mapping:
|
||||
short = short_mapping[variable]
|
||||
else:
|
||||
short = variable
|
||||
d.push_team_match_results(self.data[i]["team"], self.data[i]["competition"], self.data[i]["variable"], short, result[variable]) # needs implementation
|
||||
i+=1
|
||||
|
||||
for result in result_filtered:
|
||||
|
||||
filtered = input_vector[i][2]
|
||||
|
||||
try:
|
||||
short = short_mapping[filtered]
|
||||
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result[short]
|
||||
except KeyError: # not in mapping
|
||||
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result
|
||||
|
||||
i += 1
|
||||
|
||||
self.results = return_vector
|
||||
|
||||
d.push_match(self.apikey, self.competition, self.results)
|
Loading…
Reference in New Issue
Block a user