tra-superscript/src/cli/module.py

128 lines
2.8 KiB
Python
Raw Normal View History

import data as d
import signal
import numpy as np
import tra_analysis as an
class Module:
config = None
data = None
results = None
def __init__(self, config, apikey, tbakey, timestamp):
pass
def validate_config(self):
pass
def load_data(self):
pass
def process_data(self, exec_threads):
pass
def push_results(self):
pass
class Match:
config = None
apikey = None
tbakey = None
timestamp = None
competition = None
data = []
results = []
def __init__(self, config, apikey, tbakey, timestamp, competition):
self.config = config
self.apikey = apikey
self.tbakey = tbakey
self.timestamp = timestamp
self.competition = competition
def validate_config(self):
return True, ""
def load_data(self):
self.data = d.load_match(self.apikey, self.competition)
def simplestats(data_test):
signal.signal(signal.SIGINT, signal.SIG_IGN)
data = np.array(data_test[3])
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
test = data_test[2]
if test == "basic_stats":
return an.basic_stats(data)
if test == "historical_analysis":
return an.histo_analysis([ranges, data])
if test == "regression_linear":
return an.regression(ranges, data, ['lin'])
if test == "regression_logarithmic":
return an.regression(ranges, data, ['log'])
if test == "regression_exponential":
return an.regression(ranges, data, ['exp'])
if test == "regression_polynomial":
return an.regression(ranges, data, ['ply'])
if test == "regression_sigmoidal":
return an.regression(ranges, data, ['sig'])
def process_data(self, exec_threads):
tests = self.config["tests"]
data = self.data
input_vector = []
for team in data:
for variable in data[team]:
if variable in tests:
for test in tests[variable]:
input_vector.append((team, variable, test, data[team][variable]))
self.data = input_vector
self.results = list(exec_threads.map(self.simplestats, self.data))
def push_results(self):
short_mapping = {"regression_linear": "lin", "regression_logarithmic": "log", "regression_exponential": "exp", "regression_polynomial": "ply", "regression_sigmoidal": "sig"}
class AutoVivification(dict):
def __getitem__(self, item):
try:
return dict.__getitem__(self, item)
except KeyError:
value = self[item] = type(self)()
return value
result_filtered = self.results
input_vector = self.data
return_vector = AutoVivification()
i = 0
for result in result_filtered:
filtered = input_vector[i][2]
try:
short = short_mapping[filtered]
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result[short]
except KeyError: # not in mapping
return_vector[input_vector[i][0]][input_vector[i][1]][input_vector[i][2]] = result
i += 1
self.results = return_vector
d.push_match(self.apikey, self.competition, self.results)