mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 15:04:45 +00:00
856 lines
31 KiB
Python
856 lines
31 KiB
Python
# Titan Robotics Team 2022: Data Analysis Module
|
||
# Written by Arthur Lu & Jacob Levine
|
||
# Notes:
|
||
# this should be imported as a python module using 'import analysis'
|
||
# this should be included in the local directory or environment variable
|
||
# this module has been optimized for multhreaded computing
|
||
# current benchmark of optimization: 1.33 times faster
|
||
# setup:
|
||
|
||
__version__ = "1.1.9.001"
|
||
|
||
# changelog should be viewed using print(analysis.__changelog__)
|
||
__changelog__ = """changelog:
|
||
1.1.9.001:
|
||
- fixed bugs with SVM and NaiveBayes
|
||
1.1.9.000:
|
||
- added SVM class, subclasses, and functions
|
||
- note: untested
|
||
1.1.8.000:
|
||
- added NaiveBayes classification engine
|
||
- note: untested
|
||
1.1.7.000:
|
||
- added knn()
|
||
- added confusion matrix to decisiontree()
|
||
1.1.6.002:
|
||
- changed layout of __changelog to be vscode friendly
|
||
1.1.6.001:
|
||
- added additional hyperparameters to decisiontree()
|
||
1.1.6.000:
|
||
- fixed __version__
|
||
- fixed __all__ order
|
||
- added decisiontree()
|
||
1.1.5.003:
|
||
- added pca
|
||
1.1.5.002:
|
||
- reduced import list
|
||
- added kmeans clustering engine
|
||
1.1.5.001:
|
||
- simplified regression by using .to(device)
|
||
1.1.5.000:
|
||
- added polynomial regression to regression(); untested
|
||
1.1.4.000:
|
||
- added trueskill()
|
||
1.1.3.002:
|
||
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
|
||
1.1.3.001:
|
||
- changed glicko2() to return tuple instead of array
|
||
1.1.3.000:
|
||
- added glicko2_engine class and glicko()
|
||
- verified glicko2() accuracy
|
||
1.1.2.003:
|
||
- fixed elo()
|
||
1.1.2.002:
|
||
- added elo()
|
||
- elo() has bugs to be fixed
|
||
1.1.2.001:
|
||
- readded regrression import
|
||
1.1.2.000:
|
||
- integrated regression.py as regression class
|
||
- removed regression import
|
||
- fixed metadata for regression class
|
||
- fixed metadata for analysis class
|
||
1.1.1.001:
|
||
- regression_engine() bug fixes, now actaully regresses
|
||
1.1.1.000:
|
||
- added regression_engine()
|
||
- added all regressions except polynomial
|
||
1.1.0.007:
|
||
- updated _init_device()
|
||
1.1.0.006:
|
||
- removed useless try statements
|
||
1.1.0.005:
|
||
- removed impossible outcomes
|
||
1.1.0.004:
|
||
- added performance metrics (r^2, mse, rms)
|
||
1.1.0.003:
|
||
- resolved nopython mode for mean, median, stdev, variance
|
||
1.1.0.002:
|
||
- snapped (removed) majority of uneeded imports
|
||
- forced object mode (bad) on all jit
|
||
- TODO: stop numba complaining about not being able to compile in nopython mode
|
||
1.1.0.001:
|
||
- removed from sklearn import * to resolve uneeded wildcard imports
|
||
1.1.0.000:
|
||
- removed c_entities,nc_entities,obstacles,objectives from __all__
|
||
- applied numba.jit to all functions
|
||
- depreciated and removed stdev_z_split
|
||
- cleaned up histo_analysis to include numpy and numba.jit optimizations
|
||
- depreciated and removed all regression functions in favor of future pytorch optimizer
|
||
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
|
||
- optimized z_normalize using sklearn.preprocessing.normalize
|
||
- TODO: implement kernel/function based pytorch regression optimizer
|
||
1.0.9.000:
|
||
- refactored
|
||
- numpyed everything
|
||
- removed stats in favor of numpy functions
|
||
1.0.8.005:
|
||
- minor fixes
|
||
1.0.8.004:
|
||
- removed a few unused dependencies
|
||
1.0.8.003:
|
||
- added p_value function
|
||
1.0.8.002:
|
||
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
|
||
1.0.8.001:
|
||
- refactors
|
||
- bugfixes
|
||
1.0.8.000:
|
||
- depreciated histo_analysis_old
|
||
- depreciated debug
|
||
- altered basic_analysis to take array data instead of filepath
|
||
- refactor
|
||
- optimization
|
||
1.0.7.002:
|
||
- bug fixes
|
||
1.0.7.001:
|
||
- bug fixes
|
||
1.0.7.000:
|
||
- added tanh_regression (logistical regression)
|
||
- bug fixes
|
||
1.0.6.005:
|
||
- added z_normalize function to normalize dataset
|
||
- bug fixes
|
||
1.0.6.004:
|
||
- bug fixes
|
||
1.0.6.003:
|
||
- bug fixes
|
||
1.0.6.002:
|
||
- bug fixes
|
||
1.0.6.001:
|
||
- corrected __all__ to contain all of the functions
|
||
1.0.6.000:
|
||
- added calc_overfit, which calculates two measures of overfit, error and performance
|
||
- added calculating overfit to optimize_regression
|
||
1.0.5.000:
|
||
- added optimize_regression function, which is a sample function to find the optimal regressions
|
||
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
|
||
- planned addition: overfit detection in the optimize_regression function
|
||
1.0.4.002:
|
||
- added __changelog__
|
||
- updated debug function with log and exponential regressions
|
||
1.0.4.001:
|
||
- added log regressions
|
||
- added exponential regressions
|
||
- added log_regression and exp_regression to __all__
|
||
1.0.3.008:
|
||
- added debug function to further consolidate functions
|
||
1.0.3.007:
|
||
- added builtin benchmark function
|
||
- added builtin random (linear) data generation function
|
||
- added device initialization (_init_device)
|
||
1.0.3.006:
|
||
- reorganized the imports list to be in alphabetical order
|
||
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
|
||
1.0.3.005:
|
||
- major bug fixes
|
||
- updated historical analysis
|
||
- depreciated old historical analysis
|
||
1.0.3.004:
|
||
- added __version__, __author__, __all__
|
||
- added polynomial regression
|
||
- added root mean squared function
|
||
- added r squared function
|
||
1.0.3.003:
|
||
- bug fixes
|
||
- added c_entities
|
||
1.0.3.002:
|
||
- bug fixes
|
||
- added nc_entities, obstacles, objectives
|
||
- consolidated statistics.py to analysis.py
|
||
1.0.3.001:
|
||
- compiled 1d, column, and row basic stats into basic stats function
|
||
1.0.3.000:
|
||
- added historical analysis function
|
||
1.0.2.xxx:
|
||
- added z score test
|
||
1.0.1.xxx:
|
||
- major bug fixes
|
||
1.0.0.xxx:
|
||
- added loading csv
|
||
- added 1d, column, row basic stats
|
||
"""
|
||
|
||
__author__ = (
|
||
"Arthur Lu <learthurgo@gmail.com>",
|
||
"Jacob Levine <jlevine@imsa.edu>",
|
||
)
|
||
|
||
__all__ = [
|
||
'_init_device',
|
||
'load_csv',
|
||
'basic_stats',
|
||
'z_score',
|
||
'z_normalize',
|
||
'histo_analysis',
|
||
'regression',
|
||
'elo',
|
||
'gliko2',
|
||
'trueskill',
|
||
'r_squared',
|
||
'mse',
|
||
'rms',
|
||
'kmeans',
|
||
'pca',
|
||
'decisiontree',
|
||
'knn',
|
||
'NaiveBayes',
|
||
'SVM',
|
||
'Regression',
|
||
'Gliko2',
|
||
# all statistics functions left out due to integration in other functions
|
||
]
|
||
|
||
# now back to your regularly scheduled programming:
|
||
|
||
# imports (now in alphabetical order! v 1.0.3.006):
|
||
|
||
import csv
|
||
import numba
|
||
from numba import jit
|
||
import numpy as np
|
||
import math
|
||
try:
|
||
from analysis import trueskill as Trueskill
|
||
except:
|
||
import trueskill as Trueskill
|
||
import sklearn
|
||
from sklearn import *
|
||
import torch
|
||
|
||
class error(ValueError):
|
||
pass
|
||
|
||
def _init_device(): # initiates computation device for ANNs
|
||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
||
return device
|
||
|
||
@jit(forceobj=True)
|
||
def load_csv(filepath):
|
||
with open(filepath, newline='') as csvfile:
|
||
file_array = np.array(list(csv.reader(csvfile)))
|
||
csvfile.close()
|
||
return file_array
|
||
|
||
# expects 1d array
|
||
@jit(forceobj=True)
|
||
def basic_stats(data):
|
||
|
||
data_t = np.array(data).astype(float)
|
||
|
||
_mean = mean(data_t)
|
||
_median = median(data_t)
|
||
_stdev = stdev(data_t)
|
||
_variance = variance(data_t)
|
||
|
||
return _mean, _median, _stdev, _variance
|
||
|
||
# returns z score with inputs of point, mean and standard deviation of spread
|
||
@jit(forceobj=True)
|
||
def z_score(point, mean, stdev):
|
||
score = (point - mean) / stdev
|
||
|
||
return score
|
||
|
||
# expects 2d array, normalizes across all axes
|
||
@jit(forceobj=True)
|
||
def z_normalize(array, *args):
|
||
|
||
array = np.array(array)
|
||
for arg in args:
|
||
array = sklearn.preprocessing.normalize(array, axis = arg)
|
||
|
||
return array
|
||
|
||
@jit(forceobj=True)
|
||
# expects 2d array of [x,y]
|
||
def histo_analysis(hist_data):
|
||
|
||
hist_data = np.array(hist_data)
|
||
derivative = np.array(len(hist_data) - 1, dtype = float)
|
||
t = np.diff(hist_data)
|
||
derivative = t[1] / t[0]
|
||
np.sort(derivative)
|
||
|
||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||
|
||
@jit(forceobj=True)
|
||
def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01, power_limit = None): # inputs, outputs expects N-D array
|
||
|
||
if power_limit == None:
|
||
power_limit = len(outputs)
|
||
else:
|
||
power_limit += 1
|
||
|
||
regressions = []
|
||
Regression.set_device(device)
|
||
|
||
if 'lin' in args:
|
||
|
||
model = Regression.SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||
|
||
if 'log' in args:
|
||
|
||
model = Regression.SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||
|
||
if 'exp' in args:
|
||
|
||
model = Regression.SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||
|
||
if 'ply' in args:
|
||
|
||
plys = []
|
||
|
||
for i in range(2, power_limit):
|
||
|
||
model = Regression.SGDTrain(Regression.PolyRegKernel(len(inputs),i), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations_ply * 10 ** i, learning_rate=lr_ply * 10 ** -i, return_losses=True)
|
||
plys.append((model[0].parameters, model[1][::-1][0]))
|
||
|
||
regressions.append(plys)
|
||
|
||
if 'sig' in args:
|
||
|
||
model = Regression.SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||
|
||
return regressions
|
||
|
||
@jit(nopython=True)
|
||
def elo(starting_score, opposing_scores, observed, N, K):
|
||
|
||
expected = 1/(1+10**((np.array(opposing_scores) - starting_score)/N))
|
||
|
||
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||
|
||
@jit(forceobj=True)
|
||
def gliko2(starting_score, starting_rd, starting_vol, opposing_scores, opposing_rd, observations):
|
||
|
||
player = Gliko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||
|
||
player.update_player([x for x in opposing_scores], [x for x in opposing_rd], observations)
|
||
|
||
return (player.rating, player.rd, player.vol)
|
||
|
||
@jit(forceobj=True)
|
||
def trueskill(teams_data, observations):#teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||
|
||
team_ratings = []
|
||
|
||
for team in teams_data:
|
||
team_temp = []
|
||
for player in team:
|
||
if player != None:
|
||
player = Trueskill.Rating(player[0], player[1])
|
||
team_temp.append(player)
|
||
else:
|
||
player = Trueskill.Rating()
|
||
team_temp.append(player)
|
||
team_ratings.append(team_temp)
|
||
|
||
return Trueskill.rate(teams_data, observations)
|
||
|
||
@jit(forceobj=True)
|
||
def r_squared(predictions, targets): # assumes equal size inputs
|
||
|
||
return sklearn.metrics.r2_score(np.array(targets), np.array(predictions))
|
||
|
||
@jit(forceobj=True)
|
||
def mse(predictions, targets):
|
||
|
||
return sklearn.metrics.mean_squared_error(np.array(targets), np.array(predictions))
|
||
|
||
@jit(forceobj=True)
|
||
def rms(predictions, targets):
|
||
|
||
return math.sqrt(sklearn.metrics.mean_squared_error(np.array(targets), np.array(predictions)))
|
||
|
||
@jit(nopython=True)
|
||
def mean(data):
|
||
|
||
return np.mean(data)
|
||
|
||
@jit(nopython=True)
|
||
def median(data):
|
||
|
||
return np.median(data)
|
||
|
||
@jit(nopython=True)
|
||
def stdev(data):
|
||
|
||
return np.std(data)
|
||
|
||
@jit(nopython=True)
|
||
def variance(data):
|
||
|
||
return np.var(data)
|
||
|
||
def kmeans(data, kernel=sklearn.cluster.KMeans()):
|
||
|
||
kernel.fit(data)
|
||
predictions = kernel.predict(data)
|
||
centers = kernel.cluster_centers_
|
||
|
||
return centers, predictions
|
||
|
||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = ’auto’, tol = 0.0, iterated_power = ’auto’, random_state = None):
|
||
|
||
kernel = sklearn.decomposition.PCA()
|
||
|
||
return kernel.fit_transform(data)
|
||
|
||
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
||
|
||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||
model = model.fit(data_train,labels_train)
|
||
predictions = model.predict(data_test)
|
||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||
|
||
return model, cm, cr
|
||
|
||
def knn(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||
|
||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
model = sklearn.neighbors.KNeighborsClassifier()
|
||
model.fit(data_train, labels_train)
|
||
predictions = model.predict(data_test)
|
||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||
|
||
return model, cm, cr
|
||
|
||
class NaiveBayes:
|
||
|
||
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||
|
||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||
model.fit(data_train, labels_train)
|
||
predictions = model.predict(data_test)
|
||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||
|
||
return model, cm, cr
|
||
|
||
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||
|
||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||
model.fit(data_train, labels_train)
|
||
predictions = model.predict(data_test)
|
||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||
|
||
return model, cm, cr
|
||
|
||
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||
|
||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||
model.fit(data_train, labels_train)
|
||
predictions = model.predict(data_test)
|
||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||
|
||
return model, cm, cr
|
||
|
||
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||
|
||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||
model.fit(data_train, labels_train)
|
||
predictions = model.predict(data_test)
|
||
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||
|
||
return model, cm, cr
|
||
|
||
class SVM:
|
||
|
||
class CustomKernel:
|
||
|
||
def __new__(self, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
||
|
||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||
|
||
class StandardKernel:
|
||
|
||
def __new__(self, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
||
|
||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||
|
||
class PrebuiltKernel:
|
||
|
||
class Linear:
|
||
|
||
def __new__(self):
|
||
|
||
return sklearn.svm.SVC(kernel = 'linear')
|
||
|
||
class Polynomial:
|
||
|
||
def __new__(self, power, r_bias):
|
||
|
||
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
||
|
||
class RBF:
|
||
|
||
def __new__(self, gamma):
|
||
|
||
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
||
|
||
class Sigmoid:
|
||
|
||
def __new__(self, r_bias):
|
||
|
||
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
||
|
||
def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
|
||
|
||
return kernel.fit(train_data, train_outputs)
|
||
|
||
def eval_classification(self, kernel, test_data, test_outputs):
|
||
|
||
predictions = kernel.predict(test_data)
|
||
cm = sklearn.metrics.confusion_matrix(predictions, predictions)
|
||
cr = sklearn.metrics.classification_report(predictions, predictions)
|
||
|
||
return cm, cr
|
||
|
||
def eval_regression(self, kernel, test_data, test_outputs):
|
||
|
||
predictions = kernel.predict(test_data)
|
||
r_2 = r_squared(predictions, test_outputs)
|
||
_mse = mse(predictions, test_outputs)
|
||
_rms = rms(predictions, test_outputs)
|
||
|
||
return r_2, _mse, _rms
|
||
|
||
class Regression:
|
||
|
||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||
# Written by Arthur Lu & Jacob Levine
|
||
# Notes:
|
||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||
# this module is cuda-optimized and vectorized (except for one small part)
|
||
# setup:
|
||
|
||
__version__ = "1.0.0.002"
|
||
|
||
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||
__changelog__ = """
|
||
1.0.0.002:
|
||
-Added more parameters to log, exponential, polynomial
|
||
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||
to train the scaling and shifting of sigmoids
|
||
|
||
1.0.0.001:
|
||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||
"""
|
||
|
||
__author__ = (
|
||
"Jacob Levine <jlevine@imsa.edu>",
|
||
"Arthur Lu <learthurgo@gmail.com>"
|
||
)
|
||
|
||
__all__ = [
|
||
'factorial',
|
||
'take_all_pwrs',
|
||
'num_poly_terms',
|
||
'set_device',
|
||
'LinearRegKernel',
|
||
'SigmoidalRegKernel',
|
||
'LogRegKernel',
|
||
'PolyRegKernel',
|
||
'ExpRegKernel',
|
||
'SigmoidalRegKernelArthur',
|
||
'SGDTrain',
|
||
'CustomTrain'
|
||
]
|
||
|
||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||
|
||
#todo: document completely
|
||
|
||
def set_device(new_device):
|
||
global device
|
||
device=new_device
|
||
|
||
class LinearRegKernel():
|
||
parameters= []
|
||
weights=None
|
||
bias=None
|
||
def __init__(self, num_vars):
|
||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.parameters=[self.weights,self.bias]
|
||
def forward(self,mtx):
|
||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||
return torch.matmul(self.weights,mtx)+long_bias
|
||
|
||
class SigmoidalRegKernel():
|
||
parameters= []
|
||
weights=None
|
||
bias=None
|
||
sigmoid=torch.nn.Sigmoid()
|
||
def __init__(self, num_vars):
|
||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.parameters=[self.weights,self.bias]
|
||
def forward(self,mtx):
|
||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||
|
||
class SigmoidalRegKernelArthur():
|
||
parameters= []
|
||
weights=None
|
||
in_bias=None
|
||
scal_mult=None
|
||
out_bias=None
|
||
sigmoid=torch.nn.Sigmoid()
|
||
def __init__(self, num_vars):
|
||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||
def forward(self,mtx):
|
||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||
|
||
class LogRegKernel():
|
||
parameters= []
|
||
weights=None
|
||
in_bias=None
|
||
scal_mult=None
|
||
out_bias=None
|
||
def __init__(self, num_vars):
|
||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||
def forward(self,mtx):
|
||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||
|
||
class ExpRegKernel():
|
||
parameters= []
|
||
weights=None
|
||
in_bias=None
|
||
scal_mult=None
|
||
out_bias=None
|
||
def __init__(self, num_vars):
|
||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||
def forward(self,mtx):
|
||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||
|
||
class PolyRegKernel():
|
||
parameters= []
|
||
weights=None
|
||
bias=None
|
||
power=None
|
||
def __init__(self, num_vars, power):
|
||
self.power=power
|
||
num_terms=self.num_poly_terms(num_vars, power)
|
||
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||
self.parameters=[self.weights,self.bias]
|
||
def num_poly_terms(self,num_vars, power):
|
||
if power == 0:
|
||
return 0
|
||
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||
def factorial(self,n):
|
||
if n==0:
|
||
return 1
|
||
else:
|
||
return n*self.factorial(n-1)
|
||
def take_all_pwrs(self, vec, pwr):
|
||
#todo: vectorize (kinda)
|
||
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||
for i in torch.t(combins).to(device).to(torch.float):
|
||
out *= i
|
||
if pwr == 1:
|
||
return out
|
||
else:
|
||
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||
def forward(self,mtx):
|
||
#TODO: Vectorize the last part
|
||
cols=[]
|
||
for i in torch.t(mtx):
|
||
cols.append(self.take_all_pwrs(i,self.power))
|
||
new_mtx=torch.t(torch.stack(cols))
|
||
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||
return torch.matmul(self.weights,new_mtx)+long_bias
|
||
|
||
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||
data_cuda=data.to(device)
|
||
ground_cuda=ground.to(device)
|
||
if (return_losses):
|
||
losses=[]
|
||
for i in range(iterations):
|
||
with torch.set_grad_enabled(True):
|
||
optim.zero_grad()
|
||
pred=kernel.forward(data_cuda)
|
||
ls=loss(pred,ground_cuda)
|
||
losses.append(ls.item())
|
||
ls.backward()
|
||
optim.step()
|
||
return [kernel,losses]
|
||
else:
|
||
for i in range(iterations):
|
||
with torch.set_grad_enabled(True):
|
||
optim.zero_grad()
|
||
pred=kernel.forward(data_cuda)
|
||
ls=loss(pred,ground_cuda)
|
||
ls.backward()
|
||
optim.step()
|
||
return kernel
|
||
|
||
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||
data_cuda=data.to(device)
|
||
ground_cuda=ground.to(device)
|
||
if (return_losses):
|
||
losses=[]
|
||
for i in range(iterations):
|
||
with torch.set_grad_enabled(True):
|
||
optim.zero_grad()
|
||
pred=kernel.forward(data)
|
||
ls=loss(pred,ground)
|
||
losses.append(ls.item())
|
||
ls.backward()
|
||
optim.step()
|
||
return [kernel,losses]
|
||
else:
|
||
for i in range(iterations):
|
||
with torch.set_grad_enabled(True):
|
||
optim.zero_grad()
|
||
pred=kernel.forward(data_cuda)
|
||
ls=loss(pred,ground_cuda)
|
||
ls.backward()
|
||
optim.step()
|
||
return kernel
|
||
|
||
class Gliko2:
|
||
|
||
_tau = 0.5
|
||
|
||
def getRating(self):
|
||
return (self.__rating * 173.7178) + 1500
|
||
|
||
def setRating(self, rating):
|
||
self.__rating = (rating - 1500) / 173.7178
|
||
|
||
rating = property(getRating, setRating)
|
||
|
||
def getRd(self):
|
||
return self.__rd * 173.7178
|
||
|
||
def setRd(self, rd):
|
||
self.__rd = rd / 173.7178
|
||
|
||
rd = property(getRd, setRd)
|
||
|
||
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
||
|
||
self.setRating(rating)
|
||
self.setRd(rd)
|
||
self.vol = vol
|
||
|
||
def _preRatingRD(self):
|
||
|
||
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
||
|
||
def update_player(self, rating_list, RD_list, outcome_list):
|
||
|
||
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
||
RD_list = [x / 173.7178 for x in RD_list]
|
||
|
||
v = self._v(rating_list, RD_list)
|
||
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
||
self._preRatingRD()
|
||
|
||
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
||
|
||
tempSum = 0
|
||
for i in range(len(rating_list)):
|
||
tempSum += self._g(RD_list[i]) * \
|
||
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||
self.__rating += math.pow(self.__rd, 2) * tempSum
|
||
|
||
|
||
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
||
|
||
i = 0
|
||
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
||
a = math.log(math.pow(self.vol, 2))
|
||
tau = self._tau
|
||
x0 = a
|
||
x1 = 0
|
||
|
||
while x0 != x1:
|
||
# New iteration, so x(i) becomes x(i-1)
|
||
x0 = x1
|
||
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
||
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
||
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
||
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
||
(math.pow(self.__rating, 2) + v) \
|
||
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
||
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
||
x1 = x0 - (h1 / h2)
|
||
|
||
return math.exp(x1 / 2)
|
||
|
||
def _delta(self, rating_list, RD_list, outcome_list, v):
|
||
|
||
tempSum = 0
|
||
for i in range(len(rating_list)):
|
||
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||
return v * tempSum
|
||
|
||
def _v(self, rating_list, RD_list):
|
||
|
||
tempSum = 0
|
||
for i in range(len(rating_list)):
|
||
tempE = self._E(rating_list[i], RD_list[i])
|
||
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
||
return 1 / tempSum
|
||
|
||
def _E(self, p2rating, p2RD):
|
||
|
||
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
||
(self.__rating - p2rating)))
|
||
|
||
def _g(self, RD):
|
||
|
||
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
||
|
||
def did_not_compete(self):
|
||
|
||
self._preRatingRD() |