mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-15 07:36:18 +00:00
ab40e66a2c
Signed-off-by: Dev Singh <dev@devksingh.com>
288 lines
9.1 KiB
Python
288 lines
9.1 KiB
Python
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
|
# Written by Arthur Lu & Jacob Levine
|
|
# Notes:
|
|
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
|
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
|
# setup:
|
|
|
|
__version__ = "0.0.5"
|
|
|
|
# changelog should be viewed using print(analysis.regression.__changelog__)
|
|
__changelog__ = """
|
|
0.0.5:
|
|
- add circle fitting with LSC and HyperFit
|
|
0.0.4:
|
|
- bug fixes
|
|
- fixed changelog
|
|
0.0.3:
|
|
- bug fixes
|
|
0.0.2:
|
|
-Added more parameters to log, exponential, polynomial
|
|
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
|
to train the scaling and shifting of sigmoids
|
|
0.0.1:
|
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
|
-already vectorized (except for polynomial generation) and CUDA-optimized
|
|
"""
|
|
|
|
__author__ = (
|
|
"Jacob Levine <jlevine@imsa.edu>",
|
|
"Arthur Lu <learthurgo@gmail.com>",
|
|
"Dev Singh <dev@devksingh.com>"
|
|
)
|
|
|
|
__all__ = [
|
|
'factorial',
|
|
'take_all_pwrs',
|
|
'num_poly_terms',
|
|
'set_device',
|
|
'LinearRegKernel',
|
|
'SigmoidalRegKernel',
|
|
'LogRegKernel',
|
|
'PolyRegKernel',
|
|
'ExpRegKernel',
|
|
'SigmoidalRegKernelArthur',
|
|
'SGDTrain',
|
|
'CustomTrain',
|
|
'CircleFit'
|
|
]
|
|
|
|
import torch
|
|
import cupy as cp
|
|
import numpy as np
|
|
|
|
global device
|
|
|
|
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
|
|
|
#todo: document completely
|
|
|
|
def set_device(self, new_device):
|
|
device=new_device
|
|
|
|
class LinearRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
bias=None
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.bias]
|
|
def forward(self,mtx):
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
return torch.matmul(self.weights,mtx)+long_bias
|
|
|
|
class SigmoidalRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
bias=None
|
|
sigmoid=torch.nn.Sigmoid()
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.bias]
|
|
def forward(self,mtx):
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
|
|
|
class SigmoidalRegKernelArthur():
|
|
parameters= []
|
|
weights=None
|
|
in_bias=None
|
|
scal_mult=None
|
|
out_bias=None
|
|
sigmoid=torch.nn.Sigmoid()
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
def forward(self,mtx):
|
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
|
|
class LogRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
in_bias=None
|
|
scal_mult=None
|
|
out_bias=None
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
def forward(self,mtx):
|
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
|
|
class ExpRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
in_bias=None
|
|
scal_mult=None
|
|
out_bias=None
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
def forward(self,mtx):
|
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
|
|
class PolyRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
bias=None
|
|
power=None
|
|
def __init__(self, num_vars, power):
|
|
self.power=power
|
|
num_terms=self.num_poly_terms(num_vars, power)
|
|
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.bias]
|
|
def num_poly_terms(self,num_vars, power):
|
|
if power == 0:
|
|
return 0
|
|
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
|
def factorial(self,n):
|
|
if n==0:
|
|
return 1
|
|
else:
|
|
return n*self.factorial(n-1)
|
|
def take_all_pwrs(self, vec, pwr):
|
|
#todo: vectorize (kinda)
|
|
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
|
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
|
for i in torch.t(combins).to(device).to(torch.float):
|
|
out *= i
|
|
if pwr == 1:
|
|
return out
|
|
else:
|
|
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
|
def forward(self,mtx):
|
|
#TODO: Vectorize the last part
|
|
cols=[]
|
|
for i in torch.t(mtx):
|
|
cols.append(self.take_all_pwrs(i,self.power))
|
|
new_mtx=torch.t(torch.stack(cols))
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
return torch.matmul(self.weights,new_mtx)+long_bias
|
|
|
|
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
|
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
|
data_cuda=data.to(device)
|
|
ground_cuda=ground.to(device)
|
|
if (return_losses):
|
|
losses=[]
|
|
for i in range(iterations):
|
|
with torch.set_grad_enabled(True):
|
|
optim.zero_grad()
|
|
pred=kernel.forward(data_cuda)
|
|
ls=loss(pred,ground_cuda)
|
|
losses.append(ls.item())
|
|
ls.backward()
|
|
optim.step()
|
|
return [kernel,losses]
|
|
else:
|
|
for i in range(iterations):
|
|
with torch.set_grad_enabled(True):
|
|
optim.zero_grad()
|
|
pred=kernel.forward(data_cuda)
|
|
ls=loss(pred,ground_cuda)
|
|
ls.backward()
|
|
optim.step()
|
|
return kernel
|
|
|
|
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
|
data_cuda=data.to(device)
|
|
ground_cuda=ground.to(device)
|
|
if (return_losses):
|
|
losses=[]
|
|
for i in range(iterations):
|
|
with torch.set_grad_enabled(True):
|
|
optim.zero_grad()
|
|
pred=kernel.forward(data)
|
|
ls=loss(pred,ground)
|
|
losses.append(ls.item())
|
|
ls.backward()
|
|
optim.step()
|
|
return [kernel,losses]
|
|
else:
|
|
for i in range(iterations):
|
|
with torch.set_grad_enabled(True):
|
|
optim.zero_grad()
|
|
pred=kernel.forward(data_cuda)
|
|
ls=loss(pred,ground_cuda)
|
|
ls.backward()
|
|
optim.step()
|
|
return kernel
|
|
|
|
class CircleFit:
|
|
"""Class to fit data to a circle using both the Least Square Circle (LSC) method and the HyperFit method"""
|
|
# For more information on the LSC method, see:
|
|
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
|
|
def __init__(self, x, y, xy=None):
|
|
if data != None:
|
|
self.coords = data
|
|
self.ournp = np if device === "cpu" else cp # use the correct numpy implementation based on resources available
|
|
else:
|
|
# following block combines x and y into one array if not already done
|
|
self.coords = self.ournp.vstack(([x_data.T], [y_data.T])).T
|
|
if device !== "cpu"
|
|
cp.cuda.Stream.null.synchronize() # ensure code finishes executing on GPU before continuing
|
|
def calc_R(x, y, xc, yc):
|
|
"""Returns distance between center and point"""
|
|
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
|
|
def f(c, x, y):
|
|
"""Returns distance between point and circle at c"""
|
|
Ri = calc_R(x, y, *c)
|
|
return Ri - Ri.mean()
|
|
def LSC(self):
|
|
"""Fits given data to a circle and returns the center, radius, and variance"""
|
|
x = coords[:, 0]
|
|
y = coords[:, 1]
|
|
# guessing at a center
|
|
x_m = self.ournp.mean(x)
|
|
y_m = self.ournp.mean(y)
|
|
|
|
# calculation of the reduced coordinates
|
|
u = x - x_m
|
|
v = y - y_m
|
|
|
|
# linear system defining the center (uc, vc) in reduced coordinates:
|
|
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
|
|
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
|
|
Suv = self.ournp.sum(u*v)
|
|
Suu = self.ournp.sum(u**2)
|
|
Svv = self.ournp.sum(v**2)
|
|
Suuv = self.ournp.sum(u**2 * v)
|
|
Suvv = self.ournp.sum(u * v**2)
|
|
Suuu = self.ournp.sum(u**3)
|
|
Svvv = self.ournp.sum(v**3)
|
|
|
|
# Solving the linear system
|
|
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
|
|
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
|
|
uc, vc = self.ournp.linalg.solve(A, B)
|
|
|
|
xc_1 = x_m + uc
|
|
yc_1 = y_m + vc
|
|
|
|
# Calculate the distances from center (xc_1, yc_1)
|
|
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
|
|
R_1 = self.ournp.mean(Ri_1)
|
|
# calculate residual error
|
|
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
|
|
return xc_1, yc_1, R_1, residu_1
|
|
def HyperFit(self):
|
|
raise AttributeError("HyperFit not yet implemented")
|
|
pass
|