mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-15 17:45:55 +00:00
212 lines
5.7 KiB
JavaScript
212 lines
5.7 KiB
JavaScript
/**
|
|
* Password-Based Key-Derivation Function #2 implementation.
|
|
*
|
|
* See RFC 2898 for details.
|
|
*
|
|
* @author Dave Longley
|
|
*
|
|
* Copyright (c) 2010-2013 Digital Bazaar, Inc.
|
|
*/
|
|
var forge = require('./forge');
|
|
require('./hmac');
|
|
require('./md');
|
|
require('./util');
|
|
|
|
var pkcs5 = forge.pkcs5 = forge.pkcs5 || {};
|
|
|
|
var crypto;
|
|
if(forge.util.isNodejs && !forge.options.usePureJavaScript) {
|
|
crypto = require('crypto');
|
|
}
|
|
|
|
/**
|
|
* Derives a key from a password.
|
|
*
|
|
* @param p the password as a binary-encoded string of bytes.
|
|
* @param s the salt as a binary-encoded string of bytes.
|
|
* @param c the iteration count, a positive integer.
|
|
* @param dkLen the intended length, in bytes, of the derived key,
|
|
* (max: 2^32 - 1) * hash length of the PRF.
|
|
* @param [md] the message digest (or algorithm identifier as a string) to use
|
|
* in the PRF, defaults to SHA-1.
|
|
* @param [callback(err, key)] presence triggers asynchronous version, called
|
|
* once the operation completes.
|
|
*
|
|
* @return the derived key, as a binary-encoded string of bytes, for the
|
|
* synchronous version (if no callback is specified).
|
|
*/
|
|
module.exports = forge.pbkdf2 = pkcs5.pbkdf2 = function(
|
|
p, s, c, dkLen, md, callback) {
|
|
if(typeof md === 'function') {
|
|
callback = md;
|
|
md = null;
|
|
}
|
|
|
|
// use native implementation if possible and not disabled, note that
|
|
// some node versions only support SHA-1, others allow digest to be changed
|
|
if(forge.util.isNodejs && !forge.options.usePureJavaScript &&
|
|
crypto.pbkdf2 && (md === null || typeof md !== 'object') &&
|
|
(crypto.pbkdf2Sync.length > 4 || (!md || md === 'sha1'))) {
|
|
if(typeof md !== 'string') {
|
|
// default prf to SHA-1
|
|
md = 'sha1';
|
|
}
|
|
p = new Buffer(p, 'binary');
|
|
s = new Buffer(s, 'binary');
|
|
if(!callback) {
|
|
if(crypto.pbkdf2Sync.length === 4) {
|
|
return crypto.pbkdf2Sync(p, s, c, dkLen).toString('binary');
|
|
}
|
|
return crypto.pbkdf2Sync(p, s, c, dkLen, md).toString('binary');
|
|
}
|
|
if(crypto.pbkdf2Sync.length === 4) {
|
|
return crypto.pbkdf2(p, s, c, dkLen, function(err, key) {
|
|
if(err) {
|
|
return callback(err);
|
|
}
|
|
callback(null, key.toString('binary'));
|
|
});
|
|
}
|
|
return crypto.pbkdf2(p, s, c, dkLen, md, function(err, key) {
|
|
if(err) {
|
|
return callback(err);
|
|
}
|
|
callback(null, key.toString('binary'));
|
|
});
|
|
}
|
|
|
|
if(typeof md === 'undefined' || md === null) {
|
|
// default prf to SHA-1
|
|
md = 'sha1';
|
|
}
|
|
if(typeof md === 'string') {
|
|
if(!(md in forge.md.algorithms)) {
|
|
throw new Error('Unknown hash algorithm: ' + md);
|
|
}
|
|
md = forge.md[md].create();
|
|
}
|
|
|
|
var hLen = md.digestLength;
|
|
|
|
/* 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and
|
|
stop. */
|
|
if(dkLen > (0xFFFFFFFF * hLen)) {
|
|
var err = new Error('Derived key is too long.');
|
|
if(callback) {
|
|
return callback(err);
|
|
}
|
|
throw err;
|
|
}
|
|
|
|
/* 2. Let len be the number of hLen-octet blocks in the derived key,
|
|
rounding up, and let r be the number of octets in the last
|
|
block:
|
|
|
|
len = CEIL(dkLen / hLen),
|
|
r = dkLen - (len - 1) * hLen. */
|
|
var len = Math.ceil(dkLen / hLen);
|
|
var r = dkLen - (len - 1) * hLen;
|
|
|
|
/* 3. For each block of the derived key apply the function F defined
|
|
below to the password P, the salt S, the iteration count c, and
|
|
the block index to compute the block:
|
|
|
|
T_1 = F(P, S, c, 1),
|
|
T_2 = F(P, S, c, 2),
|
|
...
|
|
T_len = F(P, S, c, len),
|
|
|
|
where the function F is defined as the exclusive-or sum of the
|
|
first c iterates of the underlying pseudorandom function PRF
|
|
applied to the password P and the concatenation of the salt S
|
|
and the block index i:
|
|
|
|
F(P, S, c, i) = u_1 XOR u_2 XOR ... XOR u_c
|
|
|
|
where
|
|
|
|
u_1 = PRF(P, S || INT(i)),
|
|
u_2 = PRF(P, u_1),
|
|
...
|
|
u_c = PRF(P, u_{c-1}).
|
|
|
|
Here, INT(i) is a four-octet encoding of the integer i, most
|
|
significant octet first. */
|
|
var prf = forge.hmac.create();
|
|
prf.start(md, p);
|
|
var dk = '';
|
|
var xor, u_c, u_c1;
|
|
|
|
// sync version
|
|
if(!callback) {
|
|
for(var i = 1; i <= len; ++i) {
|
|
// PRF(P, S || INT(i)) (first iteration)
|
|
prf.start(null, null);
|
|
prf.update(s);
|
|
prf.update(forge.util.int32ToBytes(i));
|
|
xor = u_c1 = prf.digest().getBytes();
|
|
|
|
// PRF(P, u_{c-1}) (other iterations)
|
|
for(var j = 2; j <= c; ++j) {
|
|
prf.start(null, null);
|
|
prf.update(u_c1);
|
|
u_c = prf.digest().getBytes();
|
|
// F(p, s, c, i)
|
|
xor = forge.util.xorBytes(xor, u_c, hLen);
|
|
u_c1 = u_c;
|
|
}
|
|
|
|
/* 4. Concatenate the blocks and extract the first dkLen octets to
|
|
produce a derived key DK:
|
|
|
|
DK = T_1 || T_2 || ... || T_len<0..r-1> */
|
|
dk += (i < len) ? xor : xor.substr(0, r);
|
|
}
|
|
/* 5. Output the derived key DK. */
|
|
return dk;
|
|
}
|
|
|
|
// async version
|
|
var i = 1, j;
|
|
function outer() {
|
|
if(i > len) {
|
|
// done
|
|
return callback(null, dk);
|
|
}
|
|
|
|
// PRF(P, S || INT(i)) (first iteration)
|
|
prf.start(null, null);
|
|
prf.update(s);
|
|
prf.update(forge.util.int32ToBytes(i));
|
|
xor = u_c1 = prf.digest().getBytes();
|
|
|
|
// PRF(P, u_{c-1}) (other iterations)
|
|
j = 2;
|
|
inner();
|
|
}
|
|
|
|
function inner() {
|
|
if(j <= c) {
|
|
prf.start(null, null);
|
|
prf.update(u_c1);
|
|
u_c = prf.digest().getBytes();
|
|
// F(p, s, c, i)
|
|
xor = forge.util.xorBytes(xor, u_c, hLen);
|
|
u_c1 = u_c;
|
|
++j;
|
|
return forge.util.setImmediate(inner);
|
|
}
|
|
|
|
/* 4. Concatenate the blocks and extract the first dkLen octets to
|
|
produce a derived key DK:
|
|
|
|
DK = T_1 || T_2 || ... || T_len<0..r-1> */
|
|
dk += (i < len) ? xor : xor.substr(0, r);
|
|
|
|
++i;
|
|
outer();
|
|
}
|
|
|
|
outer();
|
|
};
|