mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-28 02:09:08 +00:00
50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
# Titan Robotics Team 2022: RandomForest submodule
|
|
# Written by Arthur Lu
|
|
# Notes:
|
|
# this should be imported as a python module using 'from tra_analysis import RandomForest'
|
|
# setup:
|
|
|
|
__version__ = "1.0.3"
|
|
|
|
__changelog__ = """changelog:
|
|
1.0.3:
|
|
- updated RandomForestClassifier and RandomForestRegressor parameters to match sklearn v 1.0.2
|
|
- changed default values for kwargs to rely on sklearn
|
|
1.0.2:
|
|
- optimized imports
|
|
1.0.1:
|
|
- fixed __all__
|
|
1.0.0:
|
|
- ported analysis.RandomFores() here
|
|
- removed classness
|
|
"""
|
|
|
|
__author__ = (
|
|
"Arthur Lu <learthurgo@gmail.com>",
|
|
)
|
|
|
|
__all__ = [
|
|
"random_forest_classifier",
|
|
"random_forest_regressor",
|
|
]
|
|
|
|
import sklearn, sklearn.ensemble, sklearn.naive_bayes
|
|
from . import ClassificationMetric, RegressionMetric
|
|
|
|
def random_forest_classifier(data, labels, test_size, n_estimators, **kwargs):
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, **kwargs)
|
|
kernel.fit(data_train, labels_train)
|
|
predictions = kernel.predict(data_test)
|
|
|
|
return kernel, ClassificationMetric(predictions, labels_test)
|
|
|
|
def random_forest_regressor(data, outputs, test_size, n_estimators, **kwargs):
|
|
|
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
|
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, **kwargs)
|
|
kernel.fit(data_train, outputs_train)
|
|
predictions = kernel.predict(data_test)
|
|
|
|
return kernel, RegressionMetric.RegressionMetric(predictions, outputs_test) |