mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
163 lines
3.8 KiB
Python
163 lines
3.8 KiB
Python
# Titan Robotics Team 2022: Superscript Script
|
|
# Written by Arthur Lu & Jacob Levine
|
|
# Notes:
|
|
# setup:
|
|
|
|
__version__ = "0.0.0.005"
|
|
|
|
# changelog should be viewed using print(analysis.__changelog__)
|
|
__changelog__ = """changelog:
|
|
0.0.0.005:
|
|
- imported pickle
|
|
- created custom database object
|
|
0.0.0.004:
|
|
- fixed simpleloop to actually return a vector
|
|
0.0.0.003:
|
|
- added metricsloop which is unfinished
|
|
0.0.0.002:
|
|
- added simpleloop which is untested until data is provided
|
|
0.0.0.001:
|
|
- created script
|
|
- added analysis, numba, numpy imports
|
|
"""
|
|
|
|
__author__ = (
|
|
"Arthur Lu <learthurgo@gmail.com>",
|
|
"Jacob Levine <jlevine@imsa.edu>",
|
|
)
|
|
|
|
__all__ = [
|
|
]
|
|
|
|
# imports:
|
|
|
|
from analysis import analysis as an
|
|
from numba import jit
|
|
import numpy as np
|
|
import pickle
|
|
import tba
|
|
try:
|
|
from analysis import trueskill as Trueskill
|
|
except:
|
|
import trueskill as Trueskill
|
|
|
|
def main():
|
|
|
|
pass
|
|
|
|
def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
|
|
|
return_vector = []
|
|
|
|
for team in data:
|
|
|
|
team_vector = []
|
|
|
|
for variable in team:
|
|
|
|
variable_vector = []
|
|
|
|
for test in tests:
|
|
|
|
if(test == "basic" or test == "basic_stats" or test == 0):
|
|
|
|
variable_vector.append(an.basic_stats(variable))
|
|
|
|
if(test == "histo" or test == "histo_analysis" or test == 1):
|
|
|
|
variable_vector.append(an.histo_analysis(variable))
|
|
|
|
if(test == "r.lin" or test == "regression.lin" or test == 2):
|
|
|
|
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["lin"]))
|
|
|
|
if(test == "r.log" or test == "regression.log" or test == 3):
|
|
|
|
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["log"]))
|
|
|
|
if(test == "r.exp" or test == "regression.exp" or test == 4):
|
|
|
|
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["exp"]))
|
|
|
|
if(test == "r.ply" or test == "regression.ply" or test == 5):
|
|
|
|
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["ply"]))
|
|
|
|
if(test == "r.sig" or test == "regression.sig" or test == 6):
|
|
|
|
variable_vector.append(an.regression("cpu", range(0, len(variable) - 1), variable, ["sig"]))
|
|
|
|
team_vector.append(variable_vector)
|
|
|
|
return_vector.append(team_vector)
|
|
|
|
return return_vector
|
|
|
|
class database:
|
|
|
|
data = {}
|
|
|
|
elo_starting_score = 1500
|
|
N = 1500
|
|
K = 32
|
|
|
|
gl2_starting_score = 1500
|
|
gl2_starting_rd = 350
|
|
gl2_starting_vol = 0.06
|
|
|
|
def __init__(self, team_lookup):
|
|
super().__init__()
|
|
|
|
for team in team_lookup:
|
|
|
|
elo = elo_starting_score
|
|
gl2 = {"score": gl2_starting_score, "rd": gl2_starting_rd, "vol": gl2_starting_vol}
|
|
ts = Trueskill.Rating()
|
|
|
|
data[str(team)] = {"elo": elo, "gl2": gl2, "ts": ts}
|
|
|
|
def get_team(self, team):
|
|
|
|
return data[team]
|
|
|
|
def get_elo(self, team):
|
|
|
|
return data[team]["elo"]
|
|
|
|
def get_gl2(self, team):
|
|
|
|
return data[team]["gl2"]
|
|
|
|
def get_ts(self, team):
|
|
|
|
return data[team]["ts"]
|
|
|
|
def set_team(self, team, ndata):
|
|
|
|
data[team] = ndata
|
|
|
|
def set_elo(self, team, nelo):
|
|
|
|
data[team]["elo"] = nelo
|
|
|
|
def set_gl2(self, team, ngl2):
|
|
|
|
data[team]["gl2"] = ngl2
|
|
|
|
def set_ts(self, team, nts):
|
|
|
|
data[team]["ts"] = nts
|
|
|
|
def save_database(self, location):
|
|
|
|
pickle.dump(data, open(location, "wb"))
|
|
|
|
def load_database(self, location):
|
|
|
|
data = pickle.load(open(location, "rb"))
|
|
|
|
def metricsloop(group_data, observations, database, tests): # listener based metrics update
|
|
|
|
pass
|
|
|
|
main() |