mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-28 15:35:54 +00:00
1024 lines
30 KiB
JavaScript
1024 lines
30 KiB
JavaScript
/**
|
|
* Password-based encryption functions.
|
|
*
|
|
* @author Dave Longley
|
|
* @author Stefan Siegl <stesie@brokenpipe.de>
|
|
*
|
|
* Copyright (c) 2010-2013 Digital Bazaar, Inc.
|
|
* Copyright (c) 2012 Stefan Siegl <stesie@brokenpipe.de>
|
|
*
|
|
* An EncryptedPrivateKeyInfo:
|
|
*
|
|
* EncryptedPrivateKeyInfo ::= SEQUENCE {
|
|
* encryptionAlgorithm EncryptionAlgorithmIdentifier,
|
|
* encryptedData EncryptedData }
|
|
*
|
|
* EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
|
|
*
|
|
* EncryptedData ::= OCTET STRING
|
|
*/
|
|
var forge = require('./forge');
|
|
require('./aes');
|
|
require('./asn1');
|
|
require('./des');
|
|
require('./md');
|
|
require('./oids');
|
|
require('./pbkdf2');
|
|
require('./pem');
|
|
require('./random');
|
|
require('./rc2');
|
|
require('./rsa');
|
|
require('./util');
|
|
|
|
if(typeof BigInteger === 'undefined') {
|
|
var BigInteger = forge.jsbn.BigInteger;
|
|
}
|
|
|
|
// shortcut for asn.1 API
|
|
var asn1 = forge.asn1;
|
|
|
|
/* Password-based encryption implementation. */
|
|
var pki = forge.pki = forge.pki || {};
|
|
module.exports = pki.pbe = forge.pbe = forge.pbe || {};
|
|
var oids = pki.oids;
|
|
|
|
// validator for an EncryptedPrivateKeyInfo structure
|
|
// Note: Currently only works w/algorithm params
|
|
var encryptedPrivateKeyValidator = {
|
|
name: 'EncryptedPrivateKeyInfo',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
value: [{
|
|
name: 'EncryptedPrivateKeyInfo.encryptionAlgorithm',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
value: [{
|
|
name: 'AlgorithmIdentifier.algorithm',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.OID,
|
|
constructed: false,
|
|
capture: 'encryptionOid'
|
|
}, {
|
|
name: 'AlgorithmIdentifier.parameters',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
captureAsn1: 'encryptionParams'
|
|
}]
|
|
}, {
|
|
// encryptedData
|
|
name: 'EncryptedPrivateKeyInfo.encryptedData',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.OCTETSTRING,
|
|
constructed: false,
|
|
capture: 'encryptedData'
|
|
}]
|
|
};
|
|
|
|
// validator for a PBES2Algorithms structure
|
|
// Note: Currently only works w/PBKDF2 + AES encryption schemes
|
|
var PBES2AlgorithmsValidator = {
|
|
name: 'PBES2Algorithms',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
value: [{
|
|
name: 'PBES2Algorithms.keyDerivationFunc',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
value: [{
|
|
name: 'PBES2Algorithms.keyDerivationFunc.oid',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.OID,
|
|
constructed: false,
|
|
capture: 'kdfOid'
|
|
}, {
|
|
name: 'PBES2Algorithms.params',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
value: [{
|
|
name: 'PBES2Algorithms.params.salt',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.OCTETSTRING,
|
|
constructed: false,
|
|
capture: 'kdfSalt'
|
|
}, {
|
|
name: 'PBES2Algorithms.params.iterationCount',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.INTEGER,
|
|
constructed: false,
|
|
capture: 'kdfIterationCount'
|
|
}, {
|
|
name: 'PBES2Algorithms.params.keyLength',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.INTEGER,
|
|
constructed: false,
|
|
optional: true,
|
|
capture: 'keyLength'
|
|
}, {
|
|
// prf
|
|
name: 'PBES2Algorithms.params.prf',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
optional: true,
|
|
value: [{
|
|
name: 'PBES2Algorithms.params.prf.algorithm',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.OID,
|
|
constructed: false,
|
|
capture: 'prfOid'
|
|
}]
|
|
}]
|
|
}]
|
|
}, {
|
|
name: 'PBES2Algorithms.encryptionScheme',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
value: [{
|
|
name: 'PBES2Algorithms.encryptionScheme.oid',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.OID,
|
|
constructed: false,
|
|
capture: 'encOid'
|
|
}, {
|
|
name: 'PBES2Algorithms.encryptionScheme.iv',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.OCTETSTRING,
|
|
constructed: false,
|
|
capture: 'encIv'
|
|
}]
|
|
}]
|
|
};
|
|
|
|
var pkcs12PbeParamsValidator = {
|
|
name: 'pkcs-12PbeParams',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.SEQUENCE,
|
|
constructed: true,
|
|
value: [{
|
|
name: 'pkcs-12PbeParams.salt',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.OCTETSTRING,
|
|
constructed: false,
|
|
capture: 'salt'
|
|
}, {
|
|
name: 'pkcs-12PbeParams.iterations',
|
|
tagClass: asn1.Class.UNIVERSAL,
|
|
type: asn1.Type.INTEGER,
|
|
constructed: false,
|
|
capture: 'iterations'
|
|
}]
|
|
};
|
|
|
|
/**
|
|
* Encrypts a ASN.1 PrivateKeyInfo object, producing an EncryptedPrivateKeyInfo.
|
|
*
|
|
* PBES2Algorithms ALGORITHM-IDENTIFIER ::=
|
|
* { {PBES2-params IDENTIFIED BY id-PBES2}, ...}
|
|
*
|
|
* id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}
|
|
*
|
|
* PBES2-params ::= SEQUENCE {
|
|
* keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
|
|
* encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
|
|
* }
|
|
*
|
|
* PBES2-KDFs ALGORITHM-IDENTIFIER ::=
|
|
* { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }
|
|
*
|
|
* PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... }
|
|
*
|
|
* PBKDF2-params ::= SEQUENCE {
|
|
* salt CHOICE {
|
|
* specified OCTET STRING,
|
|
* otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
|
|
* },
|
|
* iterationCount INTEGER (1..MAX),
|
|
* keyLength INTEGER (1..MAX) OPTIONAL,
|
|
* prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT algid-hmacWithSHA1
|
|
* }
|
|
*
|
|
* @param obj the ASN.1 PrivateKeyInfo object.
|
|
* @param password the password to encrypt with.
|
|
* @param options:
|
|
* algorithm the encryption algorithm to use
|
|
* ('aes128', 'aes192', 'aes256', '3des'), defaults to 'aes128'.
|
|
* count the iteration count to use.
|
|
* saltSize the salt size to use.
|
|
* prfAlgorithm the PRF message digest algorithm to use
|
|
* ('sha1', 'sha224', 'sha256', 'sha384', 'sha512')
|
|
*
|
|
* @return the ASN.1 EncryptedPrivateKeyInfo.
|
|
*/
|
|
pki.encryptPrivateKeyInfo = function(obj, password, options) {
|
|
// set default options
|
|
options = options || {};
|
|
options.saltSize = options.saltSize || 8;
|
|
options.count = options.count || 2048;
|
|
options.algorithm = options.algorithm || 'aes128';
|
|
options.prfAlgorithm = options.prfAlgorithm || 'sha1';
|
|
|
|
// generate PBE params
|
|
var salt = forge.random.getBytesSync(options.saltSize);
|
|
var count = options.count;
|
|
var countBytes = asn1.integerToDer(count);
|
|
var dkLen;
|
|
var encryptionAlgorithm;
|
|
var encryptedData;
|
|
if(options.algorithm.indexOf('aes') === 0 || options.algorithm === 'des') {
|
|
// do PBES2
|
|
var ivLen, encOid, cipherFn;
|
|
switch(options.algorithm) {
|
|
case 'aes128':
|
|
dkLen = 16;
|
|
ivLen = 16;
|
|
encOid = oids['aes128-CBC'];
|
|
cipherFn = forge.aes.createEncryptionCipher;
|
|
break;
|
|
case 'aes192':
|
|
dkLen = 24;
|
|
ivLen = 16;
|
|
encOid = oids['aes192-CBC'];
|
|
cipherFn = forge.aes.createEncryptionCipher;
|
|
break;
|
|
case 'aes256':
|
|
dkLen = 32;
|
|
ivLen = 16;
|
|
encOid = oids['aes256-CBC'];
|
|
cipherFn = forge.aes.createEncryptionCipher;
|
|
break;
|
|
case 'des':
|
|
dkLen = 8;
|
|
ivLen = 8;
|
|
encOid = oids['desCBC'];
|
|
cipherFn = forge.des.createEncryptionCipher;
|
|
break;
|
|
default:
|
|
var error = new Error('Cannot encrypt private key. Unknown encryption algorithm.');
|
|
error.algorithm = options.algorithm;
|
|
throw error;
|
|
}
|
|
|
|
// get PRF message digest
|
|
var prfAlgorithm = 'hmacWith' + options.prfAlgorithm.toUpperCase();
|
|
var md = prfAlgorithmToMessageDigest(prfAlgorithm);
|
|
|
|
// encrypt private key using pbe SHA-1 and AES/DES
|
|
var dk = forge.pkcs5.pbkdf2(password, salt, count, dkLen, md);
|
|
var iv = forge.random.getBytesSync(ivLen);
|
|
var cipher = cipherFn(dk);
|
|
cipher.start(iv);
|
|
cipher.update(asn1.toDer(obj));
|
|
cipher.finish();
|
|
encryptedData = cipher.output.getBytes();
|
|
|
|
// get PBKDF2-params
|
|
var params = createPbkdf2Params(salt, countBytes, dkLen, prfAlgorithm);
|
|
|
|
encryptionAlgorithm = asn1.create(
|
|
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
|
asn1.oidToDer(oids['pkcs5PBES2']).getBytes()),
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
// keyDerivationFunc
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
|
asn1.oidToDer(oids['pkcs5PBKDF2']).getBytes()),
|
|
// PBKDF2-params
|
|
params
|
|
]),
|
|
// encryptionScheme
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
|
asn1.oidToDer(encOid).getBytes()),
|
|
// iv
|
|
asn1.create(
|
|
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, iv)
|
|
])
|
|
])
|
|
]);
|
|
} else if(options.algorithm === '3des') {
|
|
// Do PKCS12 PBE
|
|
dkLen = 24;
|
|
|
|
var saltBytes = new forge.util.ByteBuffer(salt);
|
|
var dk = pki.pbe.generatePkcs12Key(password, saltBytes, 1, count, dkLen);
|
|
var iv = pki.pbe.generatePkcs12Key(password, saltBytes, 2, count, dkLen);
|
|
var cipher = forge.des.createEncryptionCipher(dk);
|
|
cipher.start(iv);
|
|
cipher.update(asn1.toDer(obj));
|
|
cipher.finish();
|
|
encryptedData = cipher.output.getBytes();
|
|
|
|
encryptionAlgorithm = asn1.create(
|
|
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
|
asn1.oidToDer(oids['pbeWithSHAAnd3-KeyTripleDES-CBC']).getBytes()),
|
|
// pkcs-12PbeParams
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
// salt
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, salt),
|
|
// iteration count
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
|
countBytes.getBytes())
|
|
])
|
|
]);
|
|
} else {
|
|
var error = new Error('Cannot encrypt private key. Unknown encryption algorithm.');
|
|
error.algorithm = options.algorithm;
|
|
throw error;
|
|
}
|
|
|
|
// EncryptedPrivateKeyInfo
|
|
var rval = asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
// encryptionAlgorithm
|
|
encryptionAlgorithm,
|
|
// encryptedData
|
|
asn1.create(
|
|
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, encryptedData)
|
|
]);
|
|
return rval;
|
|
};
|
|
|
|
/**
|
|
* Decrypts a ASN.1 PrivateKeyInfo object.
|
|
*
|
|
* @param obj the ASN.1 EncryptedPrivateKeyInfo object.
|
|
* @param password the password to decrypt with.
|
|
*
|
|
* @return the ASN.1 PrivateKeyInfo on success, null on failure.
|
|
*/
|
|
pki.decryptPrivateKeyInfo = function(obj, password) {
|
|
var rval = null;
|
|
|
|
// get PBE params
|
|
var capture = {};
|
|
var errors = [];
|
|
if(!asn1.validate(obj, encryptedPrivateKeyValidator, capture, errors)) {
|
|
var error = new Error('Cannot read encrypted private key. ' +
|
|
'ASN.1 object is not a supported EncryptedPrivateKeyInfo.');
|
|
error.errors = errors;
|
|
throw error;
|
|
}
|
|
|
|
// get cipher
|
|
var oid = asn1.derToOid(capture.encryptionOid);
|
|
var cipher = pki.pbe.getCipher(oid, capture.encryptionParams, password);
|
|
|
|
// get encrypted data
|
|
var encrypted = forge.util.createBuffer(capture.encryptedData);
|
|
|
|
cipher.update(encrypted);
|
|
if(cipher.finish()) {
|
|
rval = asn1.fromDer(cipher.output);
|
|
}
|
|
|
|
return rval;
|
|
};
|
|
|
|
/**
|
|
* Converts a EncryptedPrivateKeyInfo to PEM format.
|
|
*
|
|
* @param epki the EncryptedPrivateKeyInfo.
|
|
* @param maxline the maximum characters per line, defaults to 64.
|
|
*
|
|
* @return the PEM-formatted encrypted private key.
|
|
*/
|
|
pki.encryptedPrivateKeyToPem = function(epki, maxline) {
|
|
// convert to DER, then PEM-encode
|
|
var msg = {
|
|
type: 'ENCRYPTED PRIVATE KEY',
|
|
body: asn1.toDer(epki).getBytes()
|
|
};
|
|
return forge.pem.encode(msg, {maxline: maxline});
|
|
};
|
|
|
|
/**
|
|
* Converts a PEM-encoded EncryptedPrivateKeyInfo to ASN.1 format. Decryption
|
|
* is not performed.
|
|
*
|
|
* @param pem the EncryptedPrivateKeyInfo in PEM-format.
|
|
*
|
|
* @return the ASN.1 EncryptedPrivateKeyInfo.
|
|
*/
|
|
pki.encryptedPrivateKeyFromPem = function(pem) {
|
|
var msg = forge.pem.decode(pem)[0];
|
|
|
|
if(msg.type !== 'ENCRYPTED PRIVATE KEY') {
|
|
var error = new Error('Could not convert encrypted private key from PEM; ' +
|
|
'PEM header type is "ENCRYPTED PRIVATE KEY".');
|
|
error.headerType = msg.type;
|
|
throw error;
|
|
}
|
|
if(msg.procType && msg.procType.type === 'ENCRYPTED') {
|
|
throw new Error('Could not convert encrypted private key from PEM; ' +
|
|
'PEM is encrypted.');
|
|
}
|
|
|
|
// convert DER to ASN.1 object
|
|
return asn1.fromDer(msg.body);
|
|
};
|
|
|
|
/**
|
|
* Encrypts an RSA private key. By default, the key will be wrapped in
|
|
* a PrivateKeyInfo and encrypted to produce a PKCS#8 EncryptedPrivateKeyInfo.
|
|
* This is the standard, preferred way to encrypt a private key.
|
|
*
|
|
* To produce a non-standard PEM-encrypted private key that uses encapsulated
|
|
* headers to indicate the encryption algorithm (old-style non-PKCS#8 OpenSSL
|
|
* private key encryption), set the 'legacy' option to true. Note: Using this
|
|
* option will cause the iteration count to be forced to 1.
|
|
*
|
|
* Note: The 'des' algorithm is supported, but it is not considered to be
|
|
* secure because it only uses a single 56-bit key. If possible, it is highly
|
|
* recommended that a different algorithm be used.
|
|
*
|
|
* @param rsaKey the RSA key to encrypt.
|
|
* @param password the password to use.
|
|
* @param options:
|
|
* algorithm: the encryption algorithm to use
|
|
* ('aes128', 'aes192', 'aes256', '3des', 'des').
|
|
* count: the iteration count to use.
|
|
* saltSize: the salt size to use.
|
|
* legacy: output an old non-PKCS#8 PEM-encrypted+encapsulated
|
|
* headers (DEK-Info) private key.
|
|
*
|
|
* @return the PEM-encoded ASN.1 EncryptedPrivateKeyInfo.
|
|
*/
|
|
pki.encryptRsaPrivateKey = function(rsaKey, password, options) {
|
|
// standard PKCS#8
|
|
options = options || {};
|
|
if(!options.legacy) {
|
|
// encrypt PrivateKeyInfo
|
|
var rval = pki.wrapRsaPrivateKey(pki.privateKeyToAsn1(rsaKey));
|
|
rval = pki.encryptPrivateKeyInfo(rval, password, options);
|
|
return pki.encryptedPrivateKeyToPem(rval);
|
|
}
|
|
|
|
// legacy non-PKCS#8
|
|
var algorithm;
|
|
var iv;
|
|
var dkLen;
|
|
var cipherFn;
|
|
switch(options.algorithm) {
|
|
case 'aes128':
|
|
algorithm = 'AES-128-CBC';
|
|
dkLen = 16;
|
|
iv = forge.random.getBytesSync(16);
|
|
cipherFn = forge.aes.createEncryptionCipher;
|
|
break;
|
|
case 'aes192':
|
|
algorithm = 'AES-192-CBC';
|
|
dkLen = 24;
|
|
iv = forge.random.getBytesSync(16);
|
|
cipherFn = forge.aes.createEncryptionCipher;
|
|
break;
|
|
case 'aes256':
|
|
algorithm = 'AES-256-CBC';
|
|
dkLen = 32;
|
|
iv = forge.random.getBytesSync(16);
|
|
cipherFn = forge.aes.createEncryptionCipher;
|
|
break;
|
|
case '3des':
|
|
algorithm = 'DES-EDE3-CBC';
|
|
dkLen = 24;
|
|
iv = forge.random.getBytesSync(8);
|
|
cipherFn = forge.des.createEncryptionCipher;
|
|
break;
|
|
case 'des':
|
|
algorithm = 'DES-CBC';
|
|
dkLen = 8;
|
|
iv = forge.random.getBytesSync(8);
|
|
cipherFn = forge.des.createEncryptionCipher;
|
|
break;
|
|
default:
|
|
var error = new Error('Could not encrypt RSA private key; unsupported ' +
|
|
'encryption algorithm "' + options.algorithm + '".');
|
|
error.algorithm = options.algorithm;
|
|
throw error;
|
|
}
|
|
|
|
// encrypt private key using OpenSSL legacy key derivation
|
|
var dk = forge.pbe.opensslDeriveBytes(password, iv.substr(0, 8), dkLen);
|
|
var cipher = cipherFn(dk);
|
|
cipher.start(iv);
|
|
cipher.update(asn1.toDer(pki.privateKeyToAsn1(rsaKey)));
|
|
cipher.finish();
|
|
|
|
var msg = {
|
|
type: 'RSA PRIVATE KEY',
|
|
procType: {
|
|
version: '4',
|
|
type: 'ENCRYPTED'
|
|
},
|
|
dekInfo: {
|
|
algorithm: algorithm,
|
|
parameters: forge.util.bytesToHex(iv).toUpperCase()
|
|
},
|
|
body: cipher.output.getBytes()
|
|
};
|
|
return forge.pem.encode(msg);
|
|
};
|
|
|
|
/**
|
|
* Decrypts an RSA private key.
|
|
*
|
|
* @param pem the PEM-formatted EncryptedPrivateKeyInfo to decrypt.
|
|
* @param password the password to use.
|
|
*
|
|
* @return the RSA key on success, null on failure.
|
|
*/
|
|
pki.decryptRsaPrivateKey = function(pem, password) {
|
|
var rval = null;
|
|
|
|
var msg = forge.pem.decode(pem)[0];
|
|
|
|
if(msg.type !== 'ENCRYPTED PRIVATE KEY' &&
|
|
msg.type !== 'PRIVATE KEY' &&
|
|
msg.type !== 'RSA PRIVATE KEY') {
|
|
var error = new Error('Could not convert private key from PEM; PEM header type ' +
|
|
'is not "ENCRYPTED PRIVATE KEY", "PRIVATE KEY", or "RSA PRIVATE KEY".');
|
|
error.headerType = error;
|
|
throw error;
|
|
}
|
|
|
|
if(msg.procType && msg.procType.type === 'ENCRYPTED') {
|
|
var dkLen;
|
|
var cipherFn;
|
|
switch(msg.dekInfo.algorithm) {
|
|
case 'DES-CBC':
|
|
dkLen = 8;
|
|
cipherFn = forge.des.createDecryptionCipher;
|
|
break;
|
|
case 'DES-EDE3-CBC':
|
|
dkLen = 24;
|
|
cipherFn = forge.des.createDecryptionCipher;
|
|
break;
|
|
case 'AES-128-CBC':
|
|
dkLen = 16;
|
|
cipherFn = forge.aes.createDecryptionCipher;
|
|
break;
|
|
case 'AES-192-CBC':
|
|
dkLen = 24;
|
|
cipherFn = forge.aes.createDecryptionCipher;
|
|
break;
|
|
case 'AES-256-CBC':
|
|
dkLen = 32;
|
|
cipherFn = forge.aes.createDecryptionCipher;
|
|
break;
|
|
case 'RC2-40-CBC':
|
|
dkLen = 5;
|
|
cipherFn = function(key) {
|
|
return forge.rc2.createDecryptionCipher(key, 40);
|
|
};
|
|
break;
|
|
case 'RC2-64-CBC':
|
|
dkLen = 8;
|
|
cipherFn = function(key) {
|
|
return forge.rc2.createDecryptionCipher(key, 64);
|
|
};
|
|
break;
|
|
case 'RC2-128-CBC':
|
|
dkLen = 16;
|
|
cipherFn = function(key) {
|
|
return forge.rc2.createDecryptionCipher(key, 128);
|
|
};
|
|
break;
|
|
default:
|
|
var error = new Error('Could not decrypt private key; unsupported ' +
|
|
'encryption algorithm "' + msg.dekInfo.algorithm + '".');
|
|
error.algorithm = msg.dekInfo.algorithm;
|
|
throw error;
|
|
}
|
|
|
|
// use OpenSSL legacy key derivation
|
|
var iv = forge.util.hexToBytes(msg.dekInfo.parameters);
|
|
var dk = forge.pbe.opensslDeriveBytes(password, iv.substr(0, 8), dkLen);
|
|
var cipher = cipherFn(dk);
|
|
cipher.start(iv);
|
|
cipher.update(forge.util.createBuffer(msg.body));
|
|
if(cipher.finish()) {
|
|
rval = cipher.output.getBytes();
|
|
} else {
|
|
return rval;
|
|
}
|
|
} else {
|
|
rval = msg.body;
|
|
}
|
|
|
|
if(msg.type === 'ENCRYPTED PRIVATE KEY') {
|
|
rval = pki.decryptPrivateKeyInfo(asn1.fromDer(rval), password);
|
|
} else {
|
|
// decryption already performed above
|
|
rval = asn1.fromDer(rval);
|
|
}
|
|
|
|
if(rval !== null) {
|
|
rval = pki.privateKeyFromAsn1(rval);
|
|
}
|
|
|
|
return rval;
|
|
};
|
|
|
|
/**
|
|
* Derives a PKCS#12 key.
|
|
*
|
|
* @param password the password to derive the key material from, null or
|
|
* undefined for none.
|
|
* @param salt the salt, as a ByteBuffer, to use.
|
|
* @param id the PKCS#12 ID byte (1 = key material, 2 = IV, 3 = MAC).
|
|
* @param iter the iteration count.
|
|
* @param n the number of bytes to derive from the password.
|
|
* @param md the message digest to use, defaults to SHA-1.
|
|
*
|
|
* @return a ByteBuffer with the bytes derived from the password.
|
|
*/
|
|
pki.pbe.generatePkcs12Key = function(password, salt, id, iter, n, md) {
|
|
var j, l;
|
|
|
|
if(typeof md === 'undefined' || md === null) {
|
|
if(!('sha1' in forge.md)) {
|
|
throw new Error('"sha1" hash algorithm unavailable.');
|
|
}
|
|
md = forge.md.sha1.create();
|
|
}
|
|
|
|
var u = md.digestLength;
|
|
var v = md.blockLength;
|
|
var result = new forge.util.ByteBuffer();
|
|
|
|
/* Convert password to Unicode byte buffer + trailing 0-byte. */
|
|
var passBuf = new forge.util.ByteBuffer();
|
|
if(password !== null && password !== undefined) {
|
|
for(l = 0; l < password.length; l++) {
|
|
passBuf.putInt16(password.charCodeAt(l));
|
|
}
|
|
passBuf.putInt16(0);
|
|
}
|
|
|
|
/* Length of salt and password in BYTES. */
|
|
var p = passBuf.length();
|
|
var s = salt.length();
|
|
|
|
/* 1. Construct a string, D (the "diversifier"), by concatenating
|
|
v copies of ID. */
|
|
var D = new forge.util.ByteBuffer();
|
|
D.fillWithByte(id, v);
|
|
|
|
/* 2. Concatenate copies of the salt together to create a string S of length
|
|
v * ceil(s / v) bytes (the final copy of the salt may be trunacted
|
|
to create S).
|
|
Note that if the salt is the empty string, then so is S. */
|
|
var Slen = v * Math.ceil(s / v);
|
|
var S = new forge.util.ByteBuffer();
|
|
for(l = 0; l < Slen; l++) {
|
|
S.putByte(salt.at(l % s));
|
|
}
|
|
|
|
/* 3. Concatenate copies of the password together to create a string P of
|
|
length v * ceil(p / v) bytes (the final copy of the password may be
|
|
truncated to create P).
|
|
Note that if the password is the empty string, then so is P. */
|
|
var Plen = v * Math.ceil(p / v);
|
|
var P = new forge.util.ByteBuffer();
|
|
for(l = 0; l < Plen; l++) {
|
|
P.putByte(passBuf.at(l % p));
|
|
}
|
|
|
|
/* 4. Set I=S||P to be the concatenation of S and P. */
|
|
var I = S;
|
|
I.putBuffer(P);
|
|
|
|
/* 5. Set c=ceil(n / u). */
|
|
var c = Math.ceil(n / u);
|
|
|
|
/* 6. For i=1, 2, ..., c, do the following: */
|
|
for(var i = 1; i <= c; i++) {
|
|
/* a) Set Ai=H^r(D||I). (l.e. the rth hash of D||I, H(H(H(...H(D||I)))) */
|
|
var buf = new forge.util.ByteBuffer();
|
|
buf.putBytes(D.bytes());
|
|
buf.putBytes(I.bytes());
|
|
for(var round = 0; round < iter; round++) {
|
|
md.start();
|
|
md.update(buf.getBytes());
|
|
buf = md.digest();
|
|
}
|
|
|
|
/* b) Concatenate copies of Ai to create a string B of length v bytes (the
|
|
final copy of Ai may be truncated to create B). */
|
|
var B = new forge.util.ByteBuffer();
|
|
for(l = 0; l < v; l++) {
|
|
B.putByte(buf.at(l % u));
|
|
}
|
|
|
|
/* c) Treating I as a concatenation I0, I1, ..., Ik-1 of v-byte blocks,
|
|
where k=ceil(s / v) + ceil(p / v), modify I by setting
|
|
Ij=(Ij+B+1) mod 2v for each j. */
|
|
var k = Math.ceil(s / v) + Math.ceil(p / v);
|
|
var Inew = new forge.util.ByteBuffer();
|
|
for(j = 0; j < k; j++) {
|
|
var chunk = new forge.util.ByteBuffer(I.getBytes(v));
|
|
var x = 0x1ff;
|
|
for(l = B.length() - 1; l >= 0; l--) {
|
|
x = x >> 8;
|
|
x += B.at(l) + chunk.at(l);
|
|
chunk.setAt(l, x & 0xff);
|
|
}
|
|
Inew.putBuffer(chunk);
|
|
}
|
|
I = Inew;
|
|
|
|
/* Add Ai to A. */
|
|
result.putBuffer(buf);
|
|
}
|
|
|
|
result.truncate(result.length() - n);
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Get new Forge cipher object instance.
|
|
*
|
|
* @param oid the OID (in string notation).
|
|
* @param params the ASN.1 params object.
|
|
* @param password the password to decrypt with.
|
|
*
|
|
* @return new cipher object instance.
|
|
*/
|
|
pki.pbe.getCipher = function(oid, params, password) {
|
|
switch(oid) {
|
|
case pki.oids['pkcs5PBES2']:
|
|
return pki.pbe.getCipherForPBES2(oid, params, password);
|
|
|
|
case pki.oids['pbeWithSHAAnd3-KeyTripleDES-CBC']:
|
|
case pki.oids['pbewithSHAAnd40BitRC2-CBC']:
|
|
return pki.pbe.getCipherForPKCS12PBE(oid, params, password);
|
|
|
|
default:
|
|
var error = new Error('Cannot read encrypted PBE data block. Unsupported OID.');
|
|
error.oid = oid;
|
|
error.supportedOids = [
|
|
'pkcs5PBES2',
|
|
'pbeWithSHAAnd3-KeyTripleDES-CBC',
|
|
'pbewithSHAAnd40BitRC2-CBC'
|
|
];
|
|
throw error;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Get new Forge cipher object instance according to PBES2 params block.
|
|
*
|
|
* The returned cipher instance is already started using the IV
|
|
* from PBES2 parameter block.
|
|
*
|
|
* @param oid the PKCS#5 PBKDF2 OID (in string notation).
|
|
* @param params the ASN.1 PBES2-params object.
|
|
* @param password the password to decrypt with.
|
|
*
|
|
* @return new cipher object instance.
|
|
*/
|
|
pki.pbe.getCipherForPBES2 = function(oid, params, password) {
|
|
// get PBE params
|
|
var capture = {};
|
|
var errors = [];
|
|
if(!asn1.validate(params, PBES2AlgorithmsValidator, capture, errors)) {
|
|
var error = new Error('Cannot read password-based-encryption algorithm ' +
|
|
'parameters. ASN.1 object is not a supported EncryptedPrivateKeyInfo.');
|
|
error.errors = errors;
|
|
throw error;
|
|
}
|
|
|
|
// check oids
|
|
oid = asn1.derToOid(capture.kdfOid);
|
|
if(oid !== pki.oids['pkcs5PBKDF2']) {
|
|
var error = new Error('Cannot read encrypted private key. ' +
|
|
'Unsupported key derivation function OID.');
|
|
error.oid = oid;
|
|
error.supportedOids = ['pkcs5PBKDF2'];
|
|
throw error;
|
|
}
|
|
oid = asn1.derToOid(capture.encOid);
|
|
if(oid !== pki.oids['aes128-CBC'] &&
|
|
oid !== pki.oids['aes192-CBC'] &&
|
|
oid !== pki.oids['aes256-CBC'] &&
|
|
oid !== pki.oids['des-EDE3-CBC'] &&
|
|
oid !== pki.oids['desCBC']) {
|
|
var error = new Error('Cannot read encrypted private key. ' +
|
|
'Unsupported encryption scheme OID.');
|
|
error.oid = oid;
|
|
error.supportedOids = [
|
|
'aes128-CBC', 'aes192-CBC', 'aes256-CBC', 'des-EDE3-CBC', 'desCBC'];
|
|
throw error;
|
|
}
|
|
|
|
// set PBE params
|
|
var salt = capture.kdfSalt;
|
|
var count = forge.util.createBuffer(capture.kdfIterationCount);
|
|
count = count.getInt(count.length() << 3);
|
|
var dkLen;
|
|
var cipherFn;
|
|
switch(pki.oids[oid]) {
|
|
case 'aes128-CBC':
|
|
dkLen = 16;
|
|
cipherFn = forge.aes.createDecryptionCipher;
|
|
break;
|
|
case 'aes192-CBC':
|
|
dkLen = 24;
|
|
cipherFn = forge.aes.createDecryptionCipher;
|
|
break;
|
|
case 'aes256-CBC':
|
|
dkLen = 32;
|
|
cipherFn = forge.aes.createDecryptionCipher;
|
|
break;
|
|
case 'des-EDE3-CBC':
|
|
dkLen = 24;
|
|
cipherFn = forge.des.createDecryptionCipher;
|
|
break;
|
|
case 'desCBC':
|
|
dkLen = 8;
|
|
cipherFn = forge.des.createDecryptionCipher;
|
|
break;
|
|
}
|
|
|
|
// get PRF message digest
|
|
var md = prfOidToMessageDigest(capture.prfOid);
|
|
|
|
// decrypt private key using pbe with chosen PRF and AES/DES
|
|
var dk = forge.pkcs5.pbkdf2(password, salt, count, dkLen, md);
|
|
var iv = capture.encIv;
|
|
var cipher = cipherFn(dk);
|
|
cipher.start(iv);
|
|
|
|
return cipher;
|
|
};
|
|
|
|
/**
|
|
* Get new Forge cipher object instance for PKCS#12 PBE.
|
|
*
|
|
* The returned cipher instance is already started using the key & IV
|
|
* derived from the provided password and PKCS#12 PBE salt.
|
|
*
|
|
* @param oid The PKCS#12 PBE OID (in string notation).
|
|
* @param params The ASN.1 PKCS#12 PBE-params object.
|
|
* @param password The password to decrypt with.
|
|
*
|
|
* @return the new cipher object instance.
|
|
*/
|
|
pki.pbe.getCipherForPKCS12PBE = function(oid, params, password) {
|
|
// get PBE params
|
|
var capture = {};
|
|
var errors = [];
|
|
if(!asn1.validate(params, pkcs12PbeParamsValidator, capture, errors)) {
|
|
var error = new Error('Cannot read password-based-encryption algorithm ' +
|
|
'parameters. ASN.1 object is not a supported EncryptedPrivateKeyInfo.');
|
|
error.errors = errors;
|
|
throw error;
|
|
}
|
|
|
|
var salt = forge.util.createBuffer(capture.salt);
|
|
var count = forge.util.createBuffer(capture.iterations);
|
|
count = count.getInt(count.length() << 3);
|
|
|
|
var dkLen, dIvLen, cipherFn;
|
|
switch(oid) {
|
|
case pki.oids['pbeWithSHAAnd3-KeyTripleDES-CBC']:
|
|
dkLen = 24;
|
|
dIvLen = 8;
|
|
cipherFn = forge.des.startDecrypting;
|
|
break;
|
|
|
|
case pki.oids['pbewithSHAAnd40BitRC2-CBC']:
|
|
dkLen = 5;
|
|
dIvLen = 8;
|
|
cipherFn = function(key, iv) {
|
|
var cipher = forge.rc2.createDecryptionCipher(key, 40);
|
|
cipher.start(iv, null);
|
|
return cipher;
|
|
};
|
|
break;
|
|
|
|
default:
|
|
var error = new Error('Cannot read PKCS #12 PBE data block. Unsupported OID.');
|
|
error.oid = oid;
|
|
throw error;
|
|
}
|
|
|
|
// get PRF message digest
|
|
var md = prfOidToMessageDigest(capture.prfOid);
|
|
var key = pki.pbe.generatePkcs12Key(password, salt, 1, count, dkLen, md);
|
|
md.start();
|
|
var iv = pki.pbe.generatePkcs12Key(password, salt, 2, count, dIvLen, md);
|
|
|
|
return cipherFn(key, iv);
|
|
};
|
|
|
|
/**
|
|
* OpenSSL's legacy key derivation function.
|
|
*
|
|
* See: http://www.openssl.org/docs/crypto/EVP_BytesToKey.html
|
|
*
|
|
* @param password the password to derive the key from.
|
|
* @param salt the salt to use, null for none.
|
|
* @param dkLen the number of bytes needed for the derived key.
|
|
* @param [options] the options to use:
|
|
* [md] an optional message digest object to use.
|
|
*/
|
|
pki.pbe.opensslDeriveBytes = function(password, salt, dkLen, md) {
|
|
if(typeof md === 'undefined' || md === null) {
|
|
if(!('md5' in forge.md)) {
|
|
throw new Error('"md5" hash algorithm unavailable.');
|
|
}
|
|
md = forge.md.md5.create();
|
|
}
|
|
if(salt === null) {
|
|
salt = '';
|
|
}
|
|
var digests = [hash(md, password + salt)];
|
|
for(var length = 16, i = 1; length < dkLen; ++i, length += 16) {
|
|
digests.push(hash(md, digests[i - 1] + password + salt));
|
|
}
|
|
return digests.join('').substr(0, dkLen);
|
|
};
|
|
|
|
function hash(md, bytes) {
|
|
return md.start().update(bytes).digest().getBytes();
|
|
}
|
|
|
|
function prfOidToMessageDigest(prfOid) {
|
|
// get PRF algorithm, default to SHA-1
|
|
var prfAlgorithm;
|
|
if(!prfOid) {
|
|
prfAlgorithm = 'hmacWithSHA1';
|
|
} else {
|
|
prfAlgorithm = pki.oids[asn1.derToOid(prfOid)];
|
|
if(!prfAlgorithm) {
|
|
var error = new Error('Unsupported PRF OID.');
|
|
error.oid = prfOid;
|
|
error.supported = [
|
|
'hmacWithSHA1', 'hmacWithSHA224', 'hmacWithSHA256', 'hmacWithSHA384',
|
|
'hmacWithSHA512'];
|
|
throw error;
|
|
}
|
|
}
|
|
return prfAlgorithmToMessageDigest(prfAlgorithm);
|
|
}
|
|
|
|
function prfAlgorithmToMessageDigest(prfAlgorithm) {
|
|
var factory = forge.md;
|
|
switch(prfAlgorithm) {
|
|
case 'hmacWithSHA224':
|
|
factory = forge.md.sha512;
|
|
case 'hmacWithSHA1':
|
|
case 'hmacWithSHA256':
|
|
case 'hmacWithSHA384':
|
|
case 'hmacWithSHA512':
|
|
prfAlgorithm = prfAlgorithm.substr(8).toLowerCase();
|
|
break;
|
|
default:
|
|
var error = new Error('Unsupported PRF algorithm.');
|
|
error.algorithm = prfAlgorithm;
|
|
error.supported = [
|
|
'hmacWithSHA1', 'hmacWithSHA224', 'hmacWithSHA256', 'hmacWithSHA384',
|
|
'hmacWithSHA512'];
|
|
throw error;
|
|
}
|
|
if(!factory || !(prfAlgorithm in factory)) {
|
|
throw new Error('Unknown hash algorithm: ' + prfAlgorithm);
|
|
}
|
|
return factory[prfAlgorithm].create();
|
|
}
|
|
|
|
function createPbkdf2Params(salt, countBytes, dkLen, prfAlgorithm) {
|
|
var params = asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
// salt
|
|
asn1.create(
|
|
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING, false, salt),
|
|
// iteration count
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
|
countBytes.getBytes())
|
|
]);
|
|
// when PRF algorithm is not SHA-1 default, add key length and PRF algorithm
|
|
if(prfAlgorithm !== 'hmacWithSHA1') {
|
|
params.value.push(
|
|
// key length
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.INTEGER, false,
|
|
forge.util.hexToBytes(dkLen.toString(16))),
|
|
// AlgorithmIdentifier
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, [
|
|
// algorithm
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.OID, false,
|
|
asn1.oidToDer(pki.oids[prfAlgorithm]).getBytes()),
|
|
// parameters (null)
|
|
asn1.create(asn1.Class.UNIVERSAL, asn1.Type.NULL, false, '')
|
|
]));
|
|
}
|
|
return params;
|
|
}
|