mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 15:04:45 +00:00
1033 lines
34 KiB
Python
1033 lines
34 KiB
Python
# Titan Robotics Team 2022: Data Analysis Module
|
|
# Written by Arthur Lu & Jacob Levine
|
|
# Notes:
|
|
# this should be imported as a python module using 'from analysis import analysis'
|
|
# this should be included in the local directory or environment variable
|
|
# this module has been optimized for multhreaded computing
|
|
# current benchmark of optimization: 1.33 times faster
|
|
# setup:
|
|
|
|
__version__ = "1.2.1.003"
|
|
|
|
# changelog should be viewed using print(analysis.__changelog__)
|
|
__changelog__ = """changelog:
|
|
1.2.1.003:
|
|
- fixed __all__
|
|
1.2.1.002:
|
|
- renamed ArrayTest class to Array
|
|
1.2.1.001:
|
|
- added add, mul, neg, and inv functions to ArrayTest class
|
|
- added normalize function to ArrayTest class
|
|
- added dot and cross functions to ArrayTest class
|
|
1.2.1.000:
|
|
- added ArrayTest class
|
|
- added elementwise mean, median, standard deviation, variance, min, max functions to ArrayTest class
|
|
- added elementwise_stats to ArrayTest which encapsulates elementwise statistics
|
|
- appended to __all__ to reflect changes
|
|
1.2.0.006:
|
|
- renamed func functions in regression to lin, log, exp, and sig
|
|
1.2.0.005:
|
|
- moved random_forrest_regressor and random_forrest_classifier to RandomForrest class
|
|
- renamed Metrics to Metric
|
|
- renamed RegressionMetrics to RegressionMetric
|
|
- renamed ClassificationMetrics to ClassificationMetric
|
|
- renamed CorrelationTests to CorrelationTest
|
|
- renamed StatisticalTests to StatisticalTest
|
|
- reflected rafactoring to all mentions of above classes/functions
|
|
1.2.0.004:
|
|
- fixed __all__ to reflected the correct functions and classes
|
|
- fixed CorrelationTests and StatisticalTests class functions to require self invocation
|
|
- added missing math import
|
|
- fixed KNN class functions to require self invocation
|
|
- fixed Metrics class functions to require self invocation
|
|
- various spelling fixes in CorrelationTests and StatisticalTests
|
|
1.2.0.003:
|
|
- bug fixes with CorrelationTests and StatisticalTests
|
|
- moved glicko2 and trueskill to the metrics subpackage
|
|
- moved elo to a new metrics subpackage
|
|
1.2.0.002:
|
|
- fixed docs
|
|
1.2.0.001:
|
|
- fixed docs
|
|
1.2.0.000:
|
|
- cleaned up wild card imports with scipy and sklearn
|
|
- added CorrelationTests class
|
|
- added StatisticalTests class
|
|
- added several correlation tests to CorrelationTests
|
|
- added several statistical tests to StatisticalTests
|
|
1.1.13.009:
|
|
- moved elo, glicko2, trueskill functions under class Metrics
|
|
1.1.13.008:
|
|
- moved Glicko2 to a seperate package
|
|
1.1.13.007:
|
|
- fixed bug with trueskill
|
|
1.1.13.006:
|
|
- cleaned up imports
|
|
1.1.13.005:
|
|
- cleaned up package
|
|
1.1.13.004:
|
|
- small fixes to regression to improve performance
|
|
1.1.13.003:
|
|
- filtered nans from regression
|
|
1.1.13.002:
|
|
- removed torch requirement, and moved Regression back to regression.py
|
|
1.1.13.001:
|
|
- bug fix with linear regression not returning a proper value
|
|
- cleaned up regression
|
|
- fixed bug with polynomial regressions
|
|
1.1.13.000:
|
|
- fixed all regressions to now properly work
|
|
1.1.12.006:
|
|
- fixed bg with a division by zero in histo_analysis
|
|
1.1.12.005:
|
|
- fixed numba issues by removing numba from elo, glicko2 and trueskill
|
|
1.1.12.004:
|
|
- renamed gliko to glicko
|
|
1.1.12.003:
|
|
- removed depreciated code
|
|
1.1.12.002:
|
|
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
|
1.1.12.001:
|
|
- improved readibility of regression outputs by stripping tensor data
|
|
- used map with lambda to acheive the improved readibility
|
|
- lost numba jit support with regression, and generated_jit hangs at execution
|
|
- TODO: reimplement correct numba integration in regression
|
|
1.1.12.000:
|
|
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
|
1.1.11.010:
|
|
- alphabeticaly ordered import lists
|
|
1.1.11.009:
|
|
- bug fixes
|
|
1.1.11.008:
|
|
- bug fixes
|
|
1.1.11.007:
|
|
- bug fixes
|
|
1.1.11.006:
|
|
- tested min and max
|
|
- bug fixes
|
|
1.1.11.005:
|
|
- added min and max in basic_stats
|
|
1.1.11.004:
|
|
- bug fixes
|
|
1.1.11.003:
|
|
- bug fixes
|
|
1.1.11.002:
|
|
- consolidated metrics
|
|
- fixed __all__
|
|
1.1.11.001:
|
|
- added test/train split to RandomForestClassifier and RandomForestRegressor
|
|
1.1.11.000:
|
|
- added RandomForestClassifier and RandomForestRegressor
|
|
- note: untested
|
|
1.1.10.000:
|
|
- added numba.jit to remaining functions
|
|
1.1.9.002:
|
|
- kernelized PCA and KNN
|
|
1.1.9.001:
|
|
- fixed bugs with SVM and NaiveBayes
|
|
1.1.9.000:
|
|
- added SVM class, subclasses, and functions
|
|
- note: untested
|
|
1.1.8.000:
|
|
- added NaiveBayes classification engine
|
|
- note: untested
|
|
1.1.7.000:
|
|
- added knn()
|
|
- added confusion matrix to decisiontree()
|
|
1.1.6.002:
|
|
- changed layout of __changelog to be vscode friendly
|
|
1.1.6.001:
|
|
- added additional hyperparameters to decisiontree()
|
|
1.1.6.000:
|
|
- fixed __version__
|
|
- fixed __all__ order
|
|
- added decisiontree()
|
|
1.1.5.003:
|
|
- added pca
|
|
1.1.5.002:
|
|
- reduced import list
|
|
- added kmeans clustering engine
|
|
1.1.5.001:
|
|
- simplified regression by using .to(device)
|
|
1.1.5.000:
|
|
- added polynomial regression to regression(); untested
|
|
1.1.4.000:
|
|
- added trueskill()
|
|
1.1.3.002:
|
|
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
|
|
1.1.3.001:
|
|
- changed glicko2() to return tuple instead of array
|
|
1.1.3.000:
|
|
- added glicko2_engine class and glicko()
|
|
- verified glicko2() accuracy
|
|
1.1.2.003:
|
|
- fixed elo()
|
|
1.1.2.002:
|
|
- added elo()
|
|
- elo() has bugs to be fixed
|
|
1.1.2.001:
|
|
- readded regrression import
|
|
1.1.2.000:
|
|
- integrated regression.py as regression class
|
|
- removed regression import
|
|
- fixed metadata for regression class
|
|
- fixed metadata for analysis class
|
|
1.1.1.001:
|
|
- regression_engine() bug fixes, now actaully regresses
|
|
1.1.1.000:
|
|
- added regression_engine()
|
|
- added all regressions except polynomial
|
|
1.1.0.007:
|
|
- updated _init_device()
|
|
1.1.0.006:
|
|
- removed useless try statements
|
|
1.1.0.005:
|
|
- removed impossible outcomes
|
|
1.1.0.004:
|
|
- added performance metrics (r^2, mse, rms)
|
|
1.1.0.003:
|
|
- resolved nopython mode for mean, median, stdev, variance
|
|
1.1.0.002:
|
|
- snapped (removed) majority of uneeded imports
|
|
- forced object mode (bad) on all jit
|
|
- TODO: stop numba complaining about not being able to compile in nopython mode
|
|
1.1.0.001:
|
|
- removed from sklearn import * to resolve uneeded wildcard imports
|
|
1.1.0.000:
|
|
- removed c_entities,nc_entities,obstacles,objectives from __all__
|
|
- applied numba.jit to all functions
|
|
- depreciated and removed stdev_z_split
|
|
- cleaned up histo_analysis to include numpy and numba.jit optimizations
|
|
- depreciated and removed all regression functions in favor of future pytorch optimizer
|
|
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
|
|
- optimized z_normalize using sklearn.preprocessing.normalize
|
|
- TODO: implement kernel/function based pytorch regression optimizer
|
|
1.0.9.000:
|
|
- refactored
|
|
- numpyed everything
|
|
- removed stats in favor of numpy functions
|
|
1.0.8.005:
|
|
- minor fixes
|
|
1.0.8.004:
|
|
- removed a few unused dependencies
|
|
1.0.8.003:
|
|
- added p_value function
|
|
1.0.8.002:
|
|
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
|
|
1.0.8.001:
|
|
- refactors
|
|
- bugfixes
|
|
1.0.8.000:
|
|
- depreciated histo_analysis_old
|
|
- depreciated debug
|
|
- altered basic_analysis to take array data instead of filepath
|
|
- refactor
|
|
- optimization
|
|
1.0.7.002:
|
|
- bug fixes
|
|
1.0.7.001:
|
|
- bug fixes
|
|
1.0.7.000:
|
|
- added tanh_regression (logistical regression)
|
|
- bug fixes
|
|
1.0.6.005:
|
|
- added z_normalize function to normalize dataset
|
|
- bug fixes
|
|
1.0.6.004:
|
|
- bug fixes
|
|
1.0.6.003:
|
|
- bug fixes
|
|
1.0.6.002:
|
|
- bug fixes
|
|
1.0.6.001:
|
|
- corrected __all__ to contain all of the functions
|
|
1.0.6.000:
|
|
- added calc_overfit, which calculates two measures of overfit, error and performance
|
|
- added calculating overfit to optimize_regression
|
|
1.0.5.000:
|
|
- added optimize_regression function, which is a sample function to find the optimal regressions
|
|
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
|
|
- planned addition: overfit detection in the optimize_regression function
|
|
1.0.4.002:
|
|
- added __changelog__
|
|
- updated debug function with log and exponential regressions
|
|
1.0.4.001:
|
|
- added log regressions
|
|
- added exponential regressions
|
|
- added log_regression and exp_regression to __all__
|
|
1.0.3.008:
|
|
- added debug function to further consolidate functions
|
|
1.0.3.007:
|
|
- added builtin benchmark function
|
|
- added builtin random (linear) data generation function
|
|
- added device initialization (_init_device)
|
|
1.0.3.006:
|
|
- reorganized the imports list to be in alphabetical order
|
|
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
|
|
1.0.3.005:
|
|
- major bug fixes
|
|
- updated historical analysis
|
|
- depreciated old historical analysis
|
|
1.0.3.004:
|
|
- added __version__, __author__, __all__
|
|
- added polynomial regression
|
|
- added root mean squared function
|
|
- added r squared function
|
|
1.0.3.003:
|
|
- bug fixes
|
|
- added c_entities
|
|
1.0.3.002:
|
|
- bug fixes
|
|
- added nc_entities, obstacles, objectives
|
|
- consolidated statistics.py to analysis.py
|
|
1.0.3.001:
|
|
- compiled 1d, column, and row basic stats into basic stats function
|
|
1.0.3.000:
|
|
- added historical analysis function
|
|
1.0.2.xxx:
|
|
- added z score test
|
|
1.0.1.xxx:
|
|
- major bug fixes
|
|
1.0.0.xxx:
|
|
- added loading csv
|
|
- added 1d, column, row basic stats
|
|
"""
|
|
|
|
__author__ = (
|
|
"Arthur Lu <learthurgo@gmail.com>",
|
|
"Jacob Levine <jlevine@imsa.edu>",
|
|
)
|
|
|
|
__all__ = [
|
|
'load_csv',
|
|
'basic_stats',
|
|
'z_score',
|
|
'z_normalize',
|
|
'histo_analysis',
|
|
'regression',
|
|
'Metric',
|
|
'RegressionMetric',
|
|
'ClassificationMetric',
|
|
'kmeans',
|
|
'pca',
|
|
'decisiontree',
|
|
'KNN',
|
|
'NaiveBayes',
|
|
'SVM',
|
|
'RandomForrest',
|
|
'CorrelationTest',
|
|
'StatisticalTest',
|
|
'Array',
|
|
# all statistics functions left out due to integration in other functions
|
|
]
|
|
|
|
# now back to your regularly scheduled programming:
|
|
|
|
# imports (now in alphabetical order! v 1.0.3.006):
|
|
|
|
import csv
|
|
from analysis.metrics import elo as Elo
|
|
from analysis.metrics import glicko2 as Glicko2
|
|
import math
|
|
import numba
|
|
from numba import jit
|
|
import numpy as np
|
|
import scipy
|
|
from scipy import optimize, stats
|
|
import sklearn
|
|
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
|
|
from analysis.metrics import trueskill as Trueskill
|
|
|
|
class error(ValueError):
|
|
pass
|
|
|
|
def load_csv(filepath):
|
|
with open(filepath, newline='') as csvfile:
|
|
file_array = np.array(list(csv.reader(csvfile)))
|
|
csvfile.close()
|
|
return file_array
|
|
|
|
# expects 1d array
|
|
@jit(forceobj=True)
|
|
def basic_stats(data):
|
|
|
|
data_t = np.array(data).astype(float)
|
|
|
|
_mean = mean(data_t)
|
|
_median = median(data_t)
|
|
_stdev = stdev(data_t)
|
|
_variance = variance(data_t)
|
|
_min = npmin(data_t)
|
|
_max = npmax(data_t)
|
|
|
|
return _mean, _median, _stdev, _variance, _min, _max
|
|
|
|
# returns z score with inputs of point, mean and standard deviation of spread
|
|
@jit(forceobj=True)
|
|
def z_score(point, mean, stdev):
|
|
score = (point - mean) / stdev
|
|
|
|
return score
|
|
|
|
# expects 2d array, normalizes across all axes
|
|
@jit(forceobj=True)
|
|
def z_normalize(array, *args):
|
|
|
|
array = np.array(array)
|
|
for arg in args:
|
|
array = sklearn.preprocessing.normalize(array, axis = arg)
|
|
|
|
return array
|
|
|
|
@jit(forceobj=True)
|
|
# expects 2d array of [x,y]
|
|
def histo_analysis(hist_data):
|
|
|
|
if(len(hist_data[0]) > 2):
|
|
|
|
hist_data = np.array(hist_data)
|
|
derivative = np.array(len(hist_data) - 1, dtype = float)
|
|
t = np.diff(hist_data)
|
|
derivative = t[1] / t[0]
|
|
np.sort(derivative)
|
|
|
|
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
|
|
|
X = np.array(inputs)
|
|
y = np.array(outputs)
|
|
|
|
regressions = []
|
|
|
|
if 'lin' in args: # formula: ax + b
|
|
|
|
try:
|
|
|
|
def lin(x, a, b):
|
|
|
|
return a * x + b
|
|
|
|
popt, pcov = scipy.optimize.curve_fit(lin, X, y)
|
|
|
|
coeffs = popt.flatten().tolist()
|
|
regressions.append(str(coeffs[0]) + "*x+" + str(coeffs[1]))
|
|
|
|
except Exception as e:
|
|
|
|
pass
|
|
|
|
if 'log' in args: # formula: a log (b(x + c)) + d
|
|
|
|
try:
|
|
|
|
def log(x, a, b, c, d):
|
|
|
|
return a * np.log(b*(x + c)) + d
|
|
|
|
popt, pcov = scipy.optimize.curve_fit(log, X, y)
|
|
|
|
coeffs = popt.flatten().tolist()
|
|
regressions.append(str(coeffs[0]) + "*log(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
|
|
|
|
except Exception as e:
|
|
|
|
pass
|
|
|
|
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
|
|
|
try:
|
|
|
|
def exp(x, a, b, c, d):
|
|
|
|
return a * np.exp(b*(x + c)) + d
|
|
|
|
popt, pcov = scipy.optimize.curve_fit(exp, X, y)
|
|
|
|
coeffs = popt.flatten().tolist()
|
|
regressions.append(str(coeffs[0]) + "*e^(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
|
|
|
|
except Exception as e:
|
|
|
|
pass
|
|
|
|
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
|
|
|
inputs = np.array([inputs])
|
|
outputs = np.array([outputs])
|
|
|
|
plys = []
|
|
limit = len(outputs[0])
|
|
|
|
for i in range(2, limit):
|
|
|
|
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
|
|
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
|
|
model = model.fit(np.rot90(inputs), np.rot90(outputs))
|
|
|
|
params = model.steps[1][1].intercept_.tolist()
|
|
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
|
|
params = params.flatten().tolist()
|
|
|
|
temp = ""
|
|
counter = 0
|
|
for param in params:
|
|
temp += "(" + str(param) + "*x^" + str(counter) + ")"
|
|
counter += 1
|
|
plys.append(temp)
|
|
|
|
regressions.append(plys)
|
|
|
|
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
|
|
|
try:
|
|
|
|
def sig(x, a, b, c, d):
|
|
|
|
return a * np.tanh(b*(x + c)) + d
|
|
|
|
popt, pcov = scipy.optimize.curve_fit(sig, X, y)
|
|
|
|
coeffs = popt.flatten().tolist()
|
|
regressions.append(str(coeffs[0]) + "*tanh(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
|
|
|
|
except Exception as e:
|
|
|
|
pass
|
|
|
|
return regressions
|
|
|
|
class Metric:
|
|
|
|
def elo(self, starting_score, opposing_score, observed, N, K):
|
|
|
|
return Elo.calculate(starting_score, opposing_score, observed, N, K)
|
|
|
|
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
|
|
|
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
|
|
|
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
|
|
|
return (player.rating, player.rd, player.vol)
|
|
|
|
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
|
|
|
team_ratings = []
|
|
|
|
for team in teams_data:
|
|
team_temp = ()
|
|
for player in team:
|
|
player = Trueskill.Rating(player[0], player[1])
|
|
team_temp = team_temp + (player,)
|
|
team_ratings.append(team_temp)
|
|
|
|
return Trueskill.rate(team_ratings, ranks=observations)
|
|
|
|
class RegressionMetric():
|
|
|
|
def __new__(cls, predictions, targets):
|
|
|
|
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
|
|
|
|
def r_squared(self, predictions, targets): # assumes equal size inputs
|
|
|
|
return sklearn.metrics.r2_score(targets, predictions)
|
|
|
|
def mse(self, predictions, targets):
|
|
|
|
return sklearn.metrics.mean_squared_error(targets, predictions)
|
|
|
|
def rms(self, predictions, targets):
|
|
|
|
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|
|
|
|
class ClassificationMetric():
|
|
|
|
def __new__(cls, predictions, targets):
|
|
|
|
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
|
|
|
|
def cm(self, predictions, targets):
|
|
|
|
return sklearn.metrics.confusion_matrix(targets, predictions)
|
|
|
|
def cr(self, predictions, targets):
|
|
|
|
return sklearn.metrics.classification_report(targets, predictions)
|
|
|
|
@jit(nopython=True)
|
|
def mean(data):
|
|
|
|
return np.mean(data)
|
|
|
|
@jit(nopython=True)
|
|
def median(data):
|
|
|
|
return np.median(data)
|
|
|
|
@jit(nopython=True)
|
|
def stdev(data):
|
|
|
|
return np.std(data)
|
|
|
|
@jit(nopython=True)
|
|
def variance(data):
|
|
|
|
return np.var(data)
|
|
|
|
@jit(nopython=True)
|
|
def npmin(data):
|
|
|
|
return np.amin(data)
|
|
|
|
@jit(nopython=True)
|
|
def npmax(data):
|
|
|
|
return np.amax(data)
|
|
|
|
@jit(forceobj=True)
|
|
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
|
|
|
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
|
kernel.fit(data)
|
|
predictions = kernel.predict(data)
|
|
centers = kernel.cluster_centers_
|
|
|
|
return centers, predictions
|
|
|
|
@jit(forceobj=True)
|
|
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
|
|
|
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
|
|
|
return kernel.fit_transform(data)
|
|
|
|
@jit(forceobj=True)
|
|
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
|
model = model.fit(data_train,labels_train)
|
|
predictions = model.predict(data_test)
|
|
metrics = ClassificationMetric(predictions, labels_test)
|
|
|
|
return model, metrics
|
|
|
|
class KNN:
|
|
|
|
def knn_classifier(self, data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
model = sklearn.neighbors.KNeighborsClassifier()
|
|
model.fit(data_train, labels_train)
|
|
predictions = model.predict(data_test)
|
|
|
|
return model, ClassificationMetric(predictions, labels_test)
|
|
|
|
def knn_regressor(self, data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
|
|
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
|
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
|
model.fit(data_train, outputs_train)
|
|
predictions = model.predict(data_test)
|
|
|
|
return model, RegressionMetric(predictions, outputs_test)
|
|
|
|
class NaiveBayes:
|
|
|
|
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
|
model.fit(data_train, labels_train)
|
|
predictions = model.predict(data_test)
|
|
|
|
return model, ClassificationMetric(predictions, labels_test)
|
|
|
|
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
|
model.fit(data_train, labels_train)
|
|
predictions = model.predict(data_test)
|
|
|
|
return model, ClassificationMetric(predictions, labels_test)
|
|
|
|
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
|
model.fit(data_train, labels_train)
|
|
predictions = model.predict(data_test)
|
|
|
|
return model, ClassificationMetric(predictions, labels_test)
|
|
|
|
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
|
model.fit(data_train, labels_train)
|
|
predictions = model.predict(data_test)
|
|
|
|
return model, ClassificationMetric(predictions, labels_test)
|
|
|
|
class SVM:
|
|
|
|
class CustomKernel:
|
|
|
|
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
|
|
|
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
|
|
|
class StandardKernel:
|
|
|
|
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
|
|
|
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
|
|
|
class PrebuiltKernel:
|
|
|
|
class Linear:
|
|
|
|
def __new__(cls):
|
|
|
|
return sklearn.svm.SVC(kernel = 'linear')
|
|
|
|
class Polynomial:
|
|
|
|
def __new__(cls, power, r_bias):
|
|
|
|
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
|
|
|
class RBF:
|
|
|
|
def __new__(cls, gamma):
|
|
|
|
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
|
|
|
class Sigmoid:
|
|
|
|
def __new__(cls, r_bias):
|
|
|
|
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
|
|
|
def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
|
|
|
|
return kernel.fit(train_data, train_outputs)
|
|
|
|
def eval_classification(self, kernel, test_data, test_outputs):
|
|
|
|
predictions = kernel.predict(test_data)
|
|
|
|
return ClassificationMetric(predictions, test_outputs)
|
|
|
|
def eval_regression(self, kernel, test_data, test_outputs):
|
|
|
|
predictions = kernel.predict(test_data)
|
|
|
|
return RegressionMetric(predictions, test_outputs)
|
|
|
|
class RandomForrest:
|
|
|
|
def random_forest_classifier(self, data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
|
|
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
|
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
|
kernel.fit(data_train, labels_train)
|
|
predictions = kernel.predict(data_test)
|
|
|
|
return kernel, ClassificationMetric(predictions, labels_test)
|
|
|
|
def random_forest_regressor(self, data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
|
|
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
|
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
|
kernel.fit(data_train, outputs_train)
|
|
predictions = kernel.predict(data_test)
|
|
|
|
return kernel, RegressionMetric(predictions, outputs_test)
|
|
|
|
class CorrelationTest:
|
|
|
|
def anova_oneway(self, *args): #expects arrays of samples
|
|
|
|
results = scipy.stats.f_oneway(*args)
|
|
return {"F-value": results[0], "p-value": results[1]}
|
|
|
|
def pearson(self, x, y):
|
|
|
|
results = scipy.stats.pearsonr(x, y)
|
|
return {"r-value": results[0], "p-value": results[1]}
|
|
|
|
def spearman(self, a, b = None, axis = 0, nan_policy = 'propagate'):
|
|
|
|
results = scipy.stats.spearmanr(a, b = b, axis = axis, nan_policy = nan_policy)
|
|
return {"r-value": results[0], "p-value": results[1]}
|
|
|
|
def point_biserial(self, x,y):
|
|
|
|
results = scipy.stats.pointbiserialr(x, y)
|
|
return {"r-value": results[0], "p-value": results[1]}
|
|
|
|
def kendall(self, x, y, initial_lexsort = None, nan_policy = 'propagate', method = 'auto'):
|
|
|
|
results = scipy.stats.kendalltau(x, y, initial_lexsort = initial_lexsort, nan_policy = nan_policy, method = method)
|
|
return {"tau": results[0], "p-value": results[1]}
|
|
|
|
def kendall_weighted(self, x, y, rank = True, weigher = None, additive = True):
|
|
|
|
results = scipy.stats.weightedtau(x, y, rank = rank, weigher = weigher, additive = additive)
|
|
return {"tau": results[0], "p-value": results[1]}
|
|
|
|
def mgc(self, x, y, compute_distance = None, reps = 1000, workers = 1, is_twosamp = False, random_state = None):
|
|
|
|
results = scipy.stats.multiscale_graphcorr(x, y, compute_distance = compute_distance, reps = reps, workers = workers, is_twosamp = is_twosamp, random_state = random_state)
|
|
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value
|
|
|
|
class StatisticalTest:
|
|
|
|
def ttest_onesample(self, a, popmean, axis = 0, nan_policy = 'propagate'):
|
|
|
|
results = scipy.stats.ttest_1samp(a, popmean, axis = axis, nan_policy = nan_policy)
|
|
return {"t-value": results[0], "p-value": results[1]}
|
|
|
|
def ttest_independent(self, a, b, equal = True, nan_policy = 'propagate'):
|
|
|
|
results = scipy.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
|
|
return {"t-value": results[0], "p-value": results[1]}
|
|
|
|
def ttest_statistic(self, o1, o2, equal = True):
|
|
|
|
results = scipy.stats.ttest_ind_from_stats(o1["mean"], o1["std"], o1["nobs"], o2["mean"], o2["std"], o2["nobs"], equal_var = equal)
|
|
return {"t-value": results[0], "p-value": results[1]}
|
|
|
|
def ttest_related(self, a, b, axis = 0, nan_policy='propagate'):
|
|
|
|
results = scipy.stats.ttest_rel(a, b, axis = axis, nan_policy = nan_policy)
|
|
return {"t-value": results[0], "p-value": results[1]}
|
|
|
|
def ks_fitness(self, rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
|
|
|
|
results = scipy.stats.kstest(rvs, cdf, args = args, N = N, alternative = alternative, mode = mode)
|
|
return {"ks-value": results[0], "p-value": results[1]}
|
|
|
|
def chisquare(self, f_obs, f_exp = None, ddof = None, axis = 0):
|
|
|
|
results = scipy.stats.chisquare(f_obs, f_exp = f_exp, ddof = ddof, axis = axis)
|
|
return {"chisquared-value": results[0], "p-value": results[1]}
|
|
|
|
def powerdivergence(self, f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
|
|
|
|
results = scipy.stats.power_divergence(f_obs, f_exp = f_exp, ddof = ddof, axis = axis, lambda_ = lambda_)
|
|
return {"powerdivergence-value": results[0], "p-value": results[1]}
|
|
|
|
def ks_twosample(self, x, y, alternative = 'two_sided', mode = 'auto'):
|
|
|
|
results = scipy.stats.ks_2samp(x, y, alternative = alternative, mode = mode)
|
|
return {"ks-value": results[0], "p-value": results[1]}
|
|
|
|
def es_twosample(self, x, y, t = (0.4, 0.8)):
|
|
|
|
results = scipy.stats.epps_singleton_2samp(x, y, t = t)
|
|
return {"es-value": results[0], "p-value": results[1]}
|
|
|
|
def mw_rank(self, x, y, use_continuity = True, alternative = None):
|
|
|
|
results = scipy.stats.mannwhitneyu(x, y, use_continuity = use_continuity, alternative = alternative)
|
|
return {"u-value": results[0], "p-value": results[1]}
|
|
|
|
def mw_tiecorrection(self, rank_values):
|
|
|
|
results = scipy.stats.tiecorrect(rank_values)
|
|
return {"correction-factor": results}
|
|
|
|
def rankdata(self, a, method = 'average'):
|
|
|
|
results = scipy.stats.rankdata(a, method = method)
|
|
return results
|
|
|
|
def wilcoxon_ranksum(self, a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
|
|
|
|
results = scipy.stats.ranksums(a, b)
|
|
return {"u-value": results[0], "p-value": results[1]}
|
|
|
|
def wilcoxon_signedrank(self, x, y = None, zero_method = 'wilcox', correction = False, alternative = 'two-sided'):
|
|
|
|
results = scipy.stats.wilcoxon(x, y = y, zero_method = zero_method, correction = correction, alternative = alternative)
|
|
return {"t-value": results[0], "p-value": results[1]}
|
|
|
|
def kw_htest(self, *args, nan_policy = 'propagate'):
|
|
|
|
results = scipy.stats.kruskal(*args, nan_policy = nan_policy)
|
|
return {"h-value": results[0], "p-value": results[1]}
|
|
|
|
def friedman_chisquare(self, *args):
|
|
|
|
results = scipy.stats.friedmanchisquare(*args)
|
|
return {"chisquared-value": results[0], "p-value": results[1]}
|
|
|
|
def bm_wtest(self, x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
|
|
|
|
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
|
|
return {"w-value": results[0], "p-value": results[1]}
|
|
|
|
def combine_pvalues(self, pvalues, method = 'fisher', weights = None):
|
|
|
|
results = scipy.stats.combine_pvalues(pvalues, method = method, weights = weights)
|
|
return {"combined-statistic": results[0], "p-value": results[1]}
|
|
|
|
def jb_fitness(self, x):
|
|
|
|
results = scipy.stats.jarque_bera(x)
|
|
return {"jb-value": results[0], "p-value": results[1]}
|
|
|
|
def ab_equality(self, x, y):
|
|
|
|
results = scipy.stats.ansari(x, y)
|
|
return {"ab-value": results[0], "p-value": results[1]}
|
|
|
|
def bartlett_variance(self, *args):
|
|
|
|
results = scipy.stats.bartlett(*args)
|
|
return {"t-value": results[0], "p-value": results[1]}
|
|
|
|
def levene_variance(self, *args, center = 'median', proportiontocut = 0.05):
|
|
|
|
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
|
|
return {"w-value": results[0], "p-value": results[1]}
|
|
|
|
def sw_normality(self, x):
|
|
|
|
results = scipy.stats.shapiro(x)
|
|
return {"w-value": results[0], "p-value": results[1]}
|
|
|
|
def shapiro(self, x):
|
|
|
|
return "destroyed by facts and logic"
|
|
|
|
def ad_onesample(self, x, dist = 'norm'):
|
|
|
|
results = scipy.stats.anderson(x, dist = dist)
|
|
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
|
|
|
def ad_ksample(self, samples, midrank = True):
|
|
|
|
results = scipy.stats.anderson_ksamp(samples, midrank = midrank)
|
|
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
|
|
|
def binomial(self, x, n = None, p = 0.5, alternative = 'two-sided'):
|
|
|
|
results = scipy.stats.binom_test(x, n = n, p = p, alternative = alternative)
|
|
return {"p-value": results}
|
|
|
|
def fk_variance(self, *args, center = 'median', proportiontocut = 0.05):
|
|
|
|
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
|
|
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
|
|
|
|
def mood_mediantest(self, *args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
|
|
|
|
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
|
|
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
|
|
|
|
def mood_equalscale(self, x, y, axis = 0):
|
|
|
|
results = scipy.stats.mood(x, y, axis = axis)
|
|
return {"z-score": results[0], "p-value": results[1]}
|
|
|
|
def skewtest(self, a, axis = 0, nan_policy = 'propogate'):
|
|
|
|
results = scipy.stats.skewtest(a, axis = axis, nan_policy = nan_policy)
|
|
return {"z-score": results[0], "p-value": results[1]}
|
|
|
|
def kurtosistest(self, a, axis = 0, nan_policy = 'propogate'):
|
|
|
|
results = scipy.stats.kurtosistest(a, axis = axis, nan_policy = nan_policy)
|
|
return {"z-score": results[0], "p-value": results[1]}
|
|
|
|
def normaltest(self, a, axis = 0, nan_policy = 'propogate'):
|
|
|
|
results = scipy.stats.normaltest(a, axis = axis, nan_policy = nan_policy)
|
|
return {"z-score": results[0], "p-value": results[1]}
|
|
|
|
class Array(): # tests on nd arrays independent of basic_stats
|
|
|
|
def elementwise_mean(self, *args): # expects arrays that are size normalized
|
|
|
|
return np.mean([*args], axis = 0)
|
|
|
|
def elementwise_median(self, *args):
|
|
|
|
return np.median([*args], axis = 0)
|
|
|
|
def elementwise_stdev(self, *args):
|
|
|
|
return np.std([*args], axis = 0)
|
|
|
|
def elementwise_variance(self, *args):
|
|
|
|
return np.var([*args], axis = 0)
|
|
|
|
def elementwise_npmin(self, *args):
|
|
|
|
return np.amin([*args], axis = 0)
|
|
|
|
def elementwise_npmax(self, *args):
|
|
|
|
return np.amax([*args], axis = 0)
|
|
|
|
def elementwise_stats(self, *args):
|
|
|
|
_mean = self.elementwise_mean(*args)
|
|
_median = self.elementwise_median(*args)
|
|
_stdev = self.elementwise_stdev(*args)
|
|
_variance = self.elementwise_variance(*args)
|
|
_min = self.elementwise_npmin(*args)
|
|
_max = self.elementwise_npmax(*args)
|
|
|
|
return _mean, _median, _stdev, _variance, _min, _max
|
|
|
|
def normalize(self, array):
|
|
|
|
a = np.atleast_1d(np.linalg.norm(array))
|
|
a[a==0] = 1
|
|
return array / np.expand_dims(a, -1)
|
|
|
|
def add(self, *args):
|
|
|
|
temp = np.array([])
|
|
|
|
for a in args:
|
|
temp += a
|
|
|
|
return temp
|
|
|
|
def mul(self, *args):
|
|
|
|
temp = np.array([])
|
|
|
|
for a in args:
|
|
temp *= a
|
|
|
|
return temp
|
|
|
|
def neg(self, array):
|
|
|
|
return -array
|
|
|
|
def inv(self, array):
|
|
|
|
return 1/array
|
|
|
|
def dot(self, a, b):
|
|
|
|
return np.dot(a, b)
|
|
|
|
def cross(self, a, b):
|
|
|
|
return np.cross(a, b) |