mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
6c665b10df
changelog: - processes data more efficiently
115 lines
2.9 KiB
Python
115 lines
2.9 KiB
Python
#Titan Robotics Team 2022: Data Analysis Script
|
|
#Written by Arthur Lu & Jacob Levine
|
|
#Notes:
|
|
#setup:
|
|
|
|
__version__ = "1.0.3.000"
|
|
|
|
__changelog__ = """changelog:
|
|
1.0.3.001:
|
|
- processes data more efficiently
|
|
1.0.3.000:
|
|
- actually processes data
|
|
1.0.2.000:
|
|
- added data reading from folder
|
|
- nearly crashed computer reading from 20 GiB of data
|
|
1.0.1.000:
|
|
- added data reading from file
|
|
- added superstructure to code
|
|
1.0.0.000:
|
|
- added import statements (revolutionary)
|
|
"""
|
|
|
|
__author__ = (
|
|
"Arthur Lu <arthurlu@ttic.edu>, "
|
|
"Jacob Levine <jlevine@ttic.edu>,"
|
|
)
|
|
|
|
import firebase_admin
|
|
from firebase_admin import credentials
|
|
from firebase_admin import firestore
|
|
import analysis
|
|
import titanlearn
|
|
import visualization
|
|
import os
|
|
import glob
|
|
import numpy as np
|
|
|
|
# Use a service account
|
|
cred = credentials.Certificate('keys/titanscoutandroid_firebase.json')
|
|
firebase_admin.initialize_app(cred)
|
|
|
|
db = firestore.client()
|
|
|
|
#get all the data
|
|
|
|
analysis.generate_data("data/bdata.csv", 100, 5, -10, 10)
|
|
|
|
source_dir = 'data'
|
|
file_list = glob.glob(source_dir + '/*.csv') #supposedly sorts by alphabetical order, skips reading teams.csv because of redundancy
|
|
data = []
|
|
files = [fn for fn in glob.glob('data/*.csv')
|
|
if not os.path.basename(fn).startswith('teams')]
|
|
|
|
#for file_path in file_list:
|
|
# if not os.path.basename(file_list).startswith("teams")
|
|
# data.append(analysis.load_csv(file_path))
|
|
|
|
for i in files:
|
|
data.append(analysis.load_csv(i))
|
|
|
|
stats = []
|
|
measure_stats = []
|
|
teams = analysis.load_csv("data/teams.csv")
|
|
|
|
#assumes that team number is in the first column, and that the order of teams is the same across all files
|
|
#unhelpful comment
|
|
for measure in data: #unpacks 3d array into 2ds
|
|
|
|
measure_stats = []
|
|
|
|
for i in range(len(measure)): #unpacks into specific teams
|
|
|
|
ofbest_curve = [None]
|
|
r2best_curve = [None]
|
|
|
|
line = measure[i]
|
|
|
|
#print(line)
|
|
|
|
x = list(range(len(line)))
|
|
eqs, rmss, r2s, overfit = analysis.optimize_regression(x, line, 10, 1)
|
|
|
|
beqs, brmss, br2s, boverfit = analysis.select_best_regression(eqs, rmss, r2s, overfit, "min_overfit")
|
|
|
|
#print(eqs, rmss, r2s, overfit)
|
|
|
|
ofbest_curve.append(beqs)
|
|
ofbest_curve.append(brmss)
|
|
ofbest_curve.append(br2s)
|
|
ofbest_curve.append(boverfit)
|
|
ofbest_curve.pop(0)
|
|
|
|
#print(ofbest_curve)
|
|
|
|
beqs, brmss, br2s, boverfit = analysis.select_best_regression(eqs, rmss, r2s, overfit, "max_r2s")
|
|
|
|
r2best_curve.append(beqs)
|
|
r2best_curve.append(brmss)
|
|
r2best_curve.append(br2s)
|
|
r2best_curve.append(boverfit)
|
|
r2best_curve.pop(0)
|
|
|
|
#print(r2best_curve)
|
|
|
|
measure_stats.append(teams[i] + ["|"] + list(analysis.basic_stats(line, 0, 0)) + ["|"] + list(analysis.histo_analysis(line, 1, -3, 3)) + ["|"] + ofbest_curve + ["|"] + r2best_curve)
|
|
|
|
stats.append(list(measure_stats))
|
|
|
|
json_out = {}
|
|
|
|
for i in range(len(stats)):
|
|
json_out[files[i]]=stats[i]
|
|
|
|
db.collection(u'stats').document(u'stats-noNN').set(json_out)
|