tra-analysis/analysis-master/tra_analysis/CorrelationTest.py
Arthur Lu 44569c9fcf generalized keyword argument handling for:
Clustering.py, CorrelationTest.py, KNN.py, NaiveBayes.py
2022-02-08 07:29:47 +00:00

70 lines
1.6 KiB
Python

# Titan Robotics Team 2022: CorrelationTest submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import CorrelationTest'
# setup:
__version__ = "1.0.3"
__changelog__ = """changelog:
1.0.3:
- generalized optional args to **kwargs
1.0.2:
- optimized imports
1.0.1:
- fixed __all__
1.0.0:
- ported analysis.CorrelationTest() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
"anova_oneway",
"pearson",
"spearman",
"point_biserial",
"kendall",
"kendall_weighted",
"mgc",
]
import scipy
def anova_oneway(*args): #expects arrays of samples
results = scipy.stats.f_oneway(*args)
return {"f-value": results[0], "p-value": results[1]}
def pearson(x, y):
results = scipy.stats.pearsonr(x, y)
return {"r-value": results[0], "p-value": results[1]}
def spearman(a, b = None, **kwargs):
results = scipy.stats.spearmanr(a, b = b, **kwargs)
return {"r-value": results[0], "p-value": results[1]}
def point_biserial(x, y):
results = scipy.stats.pointbiserialr(x, y)
return {"r-value": results[0], "p-value": results[1]}
def kendall(x, y, **kwargs):
results = scipy.stats.kendalltau(x, y, **kwargs)
return {"tau": results[0], "p-value": results[1]}
def kendall_weighted(x, y, **kwargs):
results = scipy.stats.weightedtau(x, y, **kwargs)
return {"tau": results[0], "p-value": results[1]}
def mgc(x, y, **kwargs):
results = scipy.stats.multiscale_graphcorr(x, y, **kwargs)
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value