tra-analysis/data-analysis/superscript.py
Arthur Lu a59e509bc8 made changes described in Issue#32
changed setup.py to also reflect versioning changes

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
2020-07-30 19:05:07 +00:00

405 lines
10 KiB
Python

# Titan Robotics Team 2022: Superscript Script
# Written by Arthur Lu & Jacob Levine
# Notes:
# setup:
__version__ = "0.6.2"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
0.6.2:
- integrated get_team_rankings.py as get_team_metrics() function
- integrated visualize_pit.py as graph_pit_histogram() function
0.6.1:
- bug fixes with analysis.Metric() calls
- modified metric functions to use config.json defined default values
0.6.0:
- removed main function
- changed load_config function
- added save_config function
- added load_match function
- renamed simpleloop to matchloop
- moved simplestats function inside matchloop
- renamed load_metrics to load_metric
- renamed metricsloop to metricloop
- split push to database functions amon push_match, push_metric, push_pit
- moved
0.5.2:
- made changes due to refactoring of analysis
0.5.1:
- text fixes
- removed matplotlib requirement
0.5.0:
- improved user interface
0.4.2:
- removed unessasary code
0.4.1:
- fixed bug where X range for regression was determined before sanitization
- better sanitized data
0.4.0:
- fixed spelling issue in __changelog__
- addressed nan bug in regression
- fixed errors on line 335 with metrics calling incorrect key "glicko2"
- fixed errors in metrics computing
0.3.0:
- added analysis to pit data
0.2.1:
- minor stability patches
- implemented db syncing for timestamps
- fixed bugs
0.2.0:
- finalized testing and small fixes
0.1.4:
- finished metrics implement, trueskill is bugged
0.1.3:
- working
0.1.2:
- started implement of metrics
0.1.1:
- cleaned up imports
0.1.0:
- tested working, can push to database
0.0.9:
- tested working
- prints out stats for the time being, will push to database later
0.0.8:
- added data import
- removed tba import
- finished main method
0.0.7:
- added load_config
- optimized simpleloop for readibility
- added __all__ entries
- added simplestats engine
- pending testing
0.0.6:
- fixes
0.0.5:
- imported pickle
- created custom database object
0.0.4:
- fixed simpleloop to actually return a vector
0.0.3:
- added metricsloop which is unfinished
0.0.2:
- added simpleloop which is untested until data is provided
0.0.1:
- created script
- added analysis, numba, numpy imports
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"Jacob Levine <jlevine@imsa.edu>",
)
__all__ = [
"load_config",
"save_config",
"get_previous_time",
"load_match",
"matchloop",
"load_metric",
"metricloop",
"load_pit",
"pitloop",
"push_match",
"push_metric",
"push_pit",
]
# imports:
from analysis import analysis as an
import data as d
import json
import numpy as np
from os import system, name
from pathlib import Path
import matplotlib.pyplot as plt
import time
import warnings
def load_config(file):
config_vector = {}
with open(file) as f:
config_vector = json.load(f)
return config_vector
def save_config(file, config_vector):
with open(file) as f:
json.dump(config_vector, f)
def get_previous_time(apikey):
previous_time = d.get_analysis_flags(apikey, "latest_update")
if previous_time == None:
d.set_analysis_flags(apikey, "latest_update", 0)
previous_time = 0
else:
previous_time = previous_time["latest_update"]
return previous_time
def load_match(apikey, competition):
return d.get_match_data_formatted(apikey, competition)
def matchloop(apikey, competition, data, tests): # expects 3D array with [Team][Variable][Match]
def simplestats(data, test):
data = np.array(data)
data = data[np.isfinite(data)]
ranges = list(range(len(data)))
if test == "basic_stats":
return an.basic_stats(data)
if test == "historical_analysis":
return an.histo_analysis([ranges, data])
if test == "regression_linear":
return an.regression(ranges, data, ['lin'])
if test == "regression_logarithmic":
return an.regression(ranges, data, ['log'])
if test == "regression_exponential":
return an.regression(ranges, data, ['exp'])
if test == "regression_polynomial":
return an.regression(ranges, data, ['ply'])
if test == "regression_sigmoidal":
return an.regression(ranges, data, ['sig'])
return_vector = {}
for team in data:
variable_vector = {}
for variable in data[team]:
test_vector = {}
variable_data = data[team][variable]
if variable in tests:
for test in tests[variable]:
test_vector[test] = simplestats(variable_data, test)
else:
pass
variable_vector[variable] = test_vector
return_vector[team] = variable_vector
push_match(apikey, competition, return_vector)
def load_metric(apikey, competition, match, group_name, metrics):
group = {}
for team in match[group_name]:
db_data = d.get_team_metrics_data(apikey, competition, team)
if d.get_team_metrics_data(apikey, competition, team) == None:
elo = {"score": metrics["elo"]["score"]}
gl2 = {"score": metrics["gl2"]["score"], "rd": metrics["gl2"]["rd"], "vol": metrics["gl2"]["vol"]}
ts = {"mu": metrics["ts"]["mu"], "sigma": metrics["ts"]["sigma"]}
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
else:
metrics = db_data["metrics"]
elo = metrics["elo"]
gl2 = metrics["gl2"]
ts = metrics["ts"]
group[team] = {"elo": elo, "gl2": gl2, "ts": ts}
return group
def metricloop(tbakey, apikey, competition, timestamp, metrics): # listener based metrics update
elo_N = metrics["elo"]["N"]
elo_K = metrics["elo"]["K"]
matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
red = {}
blu = {}
for match in matches:
red = load_metric(apikey, competition, match, "red", metrics)
blu = load_metric(apikey, competition, match, "blue", metrics)
elo_red_total = 0
elo_blu_total = 0
gl2_red_score_total = 0
gl2_blu_score_total = 0
gl2_red_rd_total = 0
gl2_blu_rd_total = 0
gl2_red_vol_total = 0
gl2_blu_vol_total = 0
for team in red:
elo_red_total += red[team]["elo"]["score"]
gl2_red_score_total += red[team]["gl2"]["score"]
gl2_red_rd_total += red[team]["gl2"]["rd"]
gl2_red_vol_total += red[team]["gl2"]["vol"]
for team in blu:
elo_blu_total += blu[team]["elo"]["score"]
gl2_blu_score_total += blu[team]["gl2"]["score"]
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
red_elo = {"score": elo_red_total / len(red)}
blu_elo = {"score": elo_blu_total / len(blu)}
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
if match["winner"] == "red":
observations = {"red": 1, "blu": 0}
elif match["winner"] == "blue":
observations = {"red": 0, "blu": 1}
else:
observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.Metric().elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.Metric().elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metric().glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metric().glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
for team in red:
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
for team in blu:
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
temp_vector = {}
temp_vector.update(red)
temp_vector.update(blu)
push_metric(apikey, competition, temp_vector)
def load_pit(apikey, competition):
return d.get_pit_data_formatted(apikey, competition)
def pitloop(apikey, competition, pit, tests):
return_vector = {}
for team in pit:
for variable in pit[team]:
if variable in tests:
if not variable in return_vector:
return_vector[variable] = []
return_vector[variable].append(pit[team][variable])
push_pit(apikey, competition, return_vector)
def push_match(apikey, competition, results):
for team in results:
d.push_team_tests_data(apikey, competition, team, results[team])
def push_metric(apikey, competition, metric):
for team in metric:
d.push_team_metrics_data(apikey, competition, team, metric[team])
def push_pit(apikey, competition, pit):
for variable in pit:
d.push_team_pit_data(apikey, competition, variable, pit[variable])
def get_team_metrics(apikey, tbakey, competition):
metrics = d.get_metrics_data_formatted(apikey, competition)
elo = {}
gl2 = {}
for team in metrics:
elo[team] = metrics[team]["metrics"]["elo"]["score"]
gl2[team] = metrics[team]["metrics"]["gl2"]["score"]
elo = {k: v for k, v in sorted(elo.items(), key=lambda item: item[1])}
gl2 = {k: v for k, v in sorted(gl2.items(), key=lambda item: item[1])}
elo_ranked = []
for team in elo:
elo_ranked.append({"team": str(team), "elo": str(elo[team])})
gl2_ranked = []
for team in gl2:
gl2_ranked.append({"team": str(team), "gl2": str(gl2[team])})
return {"elo-ranks": elo_ranked, "glicko2-ranks": gl2_ranked}
def graph_pit_histogram(apikey, competition, figsize=(80,15)):
pit = d.get_pit_variable_formatted(apikey, competition)
fig, ax = plt.subplots(1, len(pit), sharey=True, figsize=figsize)
i = 0
for variable in pit:
ax[i].hist(pit[variable])
ax[i].invert_xaxis()
ax[i].set_xlabel('')
ax[i].set_ylabel('Frequency')
ax[i].set_title(variable)
plt.yticks(np.arange(len(pit[variable])))
i+=1
plt.show()