mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 09:39:10 +00:00
3606a072c4
added unit tests for normalized clustering
61 lines
2.5 KiB
Python
61 lines
2.5 KiB
Python
# Titan Robotics Team 2022: Clustering submodule
|
|
# Written by Arthur Lu
|
|
# Notes:
|
|
# this should be imported as a python module using 'from tra_analysis import Clustering'
|
|
# setup:
|
|
|
|
__version__ = "2.0.1"
|
|
|
|
# changelog should be viewed using print(analysis.__changelog__)
|
|
__changelog__ = """changelog:
|
|
2.0.1:
|
|
- added normalization preprocessing to clustering, expects instance of sklearn.preprocessing.Normalizer()
|
|
2.0.0:
|
|
- added dbscan clustering algo
|
|
- added spectral clustering algo
|
|
1.0.0:
|
|
- created this submodule
|
|
- copied kmeans clustering from Analysis
|
|
"""
|
|
|
|
__author__ = (
|
|
"Arthur Lu <learthurgo@gmail.com>",
|
|
)
|
|
|
|
__all__ = [
|
|
"kmeans",
|
|
"dbscan",
|
|
"spectral",
|
|
]
|
|
|
|
import sklearn
|
|
|
|
def kmeans(data, normalizer = None, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
|
|
|
if normalizer != None:
|
|
data = normalizer.transform(data)
|
|
|
|
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
|
kernel.fit(data)
|
|
predictions = kernel.predict(data)
|
|
centers = kernel.cluster_centers_
|
|
|
|
return centers, predictions
|
|
|
|
def dbscan(data, normalizer=None, eps=0.5, min_samples=5, metric='euclidean', metric_params=None, algorithm='auto', leaf_size=30, p=None, n_jobs=None):
|
|
|
|
if normalizer != None:
|
|
data = normalizer.transform(data)
|
|
|
|
model = sklearn.cluster.DBSCAN(eps = eps, min_samples = min_samples, metric = metric, metric_params = metric_params, algorithm = algorithm, leaf_size = leaf_size, p = p, n_jobs = n_jobs).fit(data)
|
|
|
|
return model.labels_
|
|
|
|
def spectral(data, normalizer=None, n_clusters=8, eigen_solver=None, n_components=None, random_state=None, n_init=10, gamma=1.0, affinity='rbf', n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3, coef0=1, kernel_params=None, n_jobs=None, verbose=False):
|
|
|
|
if normalizer != None:
|
|
data = normalizer.transform(data)
|
|
|
|
model = sklearn.cluster.SpectralClustering(n_clusters = n_clusters, eigen_solver = eigen_solver, n_components = n_components, random_state = random_state, n_init = n_init, gamma = gamma, affinity = affinity, n_neighbors = n_neighbors, eigen_tol = eigen_tol, assign_labels = assign_labels, degree = degree, coef0 = coef0, kernel_params = kernel_params, n_jobs = n_jobs).fit(data)
|
|
|
|
return model.labels_ |