tra-analysis/data analysis/superscript.py
ltcptgeneral 2b1dd3ed9b superscript.py - v 1.0.4.000
changelog:
- actually pushes to firebase
2019-02-26 19:39:56 -06:00

119 lines
2.9 KiB
Python

#Titan Robotics Team 2022: Data Analysis Script
#Written by Arthur Lu & Jacob Levine
#Notes:
#setup:
__version__ = "1.0.4.000"
__changelog__ = """changelog:
1.0.4.000:
- actually pushes to firebase
1.0.3.001:
- processes data more efficiently
1.0.3.000:
- actually processes data
1.0.2.000:
- added data reading from folder
- nearly crashed computer reading from 20 GiB of data
1.0.1.000:
- added data reading from file
- added superstructure to code
1.0.0.000:
- added import statements (revolutionary)
"""
__author__ = (
"Arthur Lu <arthurlu@ttic.edu>, "
"Jacob Levine <jlevine@ttic.edu>,"
)
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import analysis
import titanlearn
import visualization
import os
import glob
import numpy as np
# Use a service account
cred = credentials.Certificate('keys/firebasekey.json')
firebase_admin.initialize_app(cred)
db = firestore.client()
#get all the data
analysis.generate_data("data/bdata.csv", 100, 5, -10, 10)
source_dir = 'data'
file_list = glob.glob(source_dir + '/*.csv') #supposedly sorts by alphabetical order, skips reading teams.csv because of redundancy
data = []
files = [fn for fn in glob.glob('data/*.csv')
if not os.path.basename(fn).startswith('teams')]
#for file_path in file_list:
# if not os.path.basename(file_list).startswith("teams")
# data.append(analysis.load_csv(file_path))
for i in files:
data.append(analysis.load_csv(i))
stats = []
measure_stats = []
teams = analysis.load_csv("data/teams.csv")
#assumes that team number is in the first column, and that the order of teams is the same across all files
#unhelpful comment
for measure in data: #unpacks 3d array into 2ds
measure_stats = []
for i in range(len(measure)): #unpacks into specific teams
ofbest_curve = [None]
r2best_curve = [None]
line = measure[i]
#print(line)
x = list(range(len(line)))
eqs, rmss, r2s, overfit = analysis.optimize_regression(x, line, 10, 1)
beqs, brmss, br2s, boverfit = analysis.select_best_regression(eqs, rmss, r2s, overfit, "min_overfit")
#print(eqs, rmss, r2s, overfit)
ofbest_curve.append(beqs)
ofbest_curve.append(brmss)
ofbest_curve.append(br2s)
ofbest_curve.append(boverfit)
ofbest_curve.pop(0)
#print(ofbest_curve)
beqs, brmss, br2s, boverfit = analysis.select_best_regression(eqs, rmss, r2s, overfit, "max_r2s")
r2best_curve.append(beqs)
r2best_curve.append(brmss)
r2best_curve.append(br2s)
r2best_curve.append(boverfit)
r2best_curve.pop(0)
#print(r2best_curve)
measure_stats.append(teams[i] + ["|"] + list(analysis.basic_stats(line, 0, 0)) + ["|"] + list(analysis.histo_analysis(line, 1, -3, 3)) + ["|"] + ofbest_curve + ["|"] + r2best_curve)
stats.append(list(measure_stats))
json_out = {}
for i in range(len(stats)):
json_out[files[i]]=str(stats[i])
print(json_out)
db.collection(u'stats').document(u'stats-noNN').set(json_out)