tra-analysis/analysis-master/tra_analysis/regression_old.py
Arthur Lu 60beaa4563 tra-analysis v 3.0.0 aggregate PR (#73)
* reflected doc changes to README.md

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* tra_analysis v 2.1.0-alpha.1

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* changed setup.py to use __version__ from source
added Topic and keywords

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* updated Supported Platforms in README.md

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved required files back to parent

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved security back to parent

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved security back to parent
moved contributing back to parent

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* add PR template

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved to parent folder

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* moved meta files to .github folder

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* Analysis.py v 3.0.1

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* updated test_analysis for submodules, and added missing numpy import in Sort.py

* fixed item one of Issue #58

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* readded cache searching in postCreateCommand

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* added myself as an author

* feat: created kivy gui boilerplate

* added Kivy to requirements.txt

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* feat: gui with placeholders

* fix: changed config.json path

* migrated docker base image to debian

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* style: spaces to tabs

* migrated to ubuntu

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fixed issues

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fix: docker build?

* fix: use ubuntu bionic

* fix: get kivy installed

* @ltcptgeneral can't spell

* optim dockerfile for not installing unused packages

* install basic stuff while building the container

* use prebuilt image for development

* install pylint on base image

* rename and use new kivy

* tests: added tests for Array and CorrelationTest

Both are not working due to errors

* use new thing

* use 20.04 base

* symlink pip3 to pip

* use pip instead of pip3

* equation.Expression.py v 0.0.1-alpha
added corresponding .pyc to .gitignore

* parser.py v 0.0.2-alpha

* added pyparsing to requirements.txt

* parser v 0.0.4-alpha

* Equation v 0.0.1-alpha

* added Equation to tra_analysis imports

* tests: New unit tests for submoduling (#66)

* feat: created kivy gui boilerplate

* migrated docker base image to debian

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* migrated to ubuntu

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fixed issues

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fix: docker build?

* fix: use ubuntu bionic

* fix: get kivy installed

* @ltcptgeneral can't spell

* optim dockerfile for not installing unused packages

* install basic stuff while building the container

* use prebuilt image for development

* install pylint on base image

* rename and use new kivy

* tests: added tests for Array and CorrelationTest

Both are not working due to errors

* fix: Array no longer has *args and CorrelationTest functions no longer have self in the arguments

* use new thing

* use 20.04 base

* symlink pip3 to pip

* use pip instead of pip3

* tra_analysis v 2.1.0-alpha.2
SVM v 1.0.1
added unvalidated SVM unit tests

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* fixed version number

Signed-off-by: ltcptgeneral <learthurgo@gmail.com>

* tests: added tests for ClassificationMetric

* partially fixed and commented out svm unit tests

* fixed some SVM unit tests

* added installing pytest to devcontainer.json

* fix: small fixes to KNN

Namely, removing self from parameters and passing correct arguments to KNeighborsClassifier constructor

* fix, test: Added tests for KNN and NaiveBayes.

Also made some small fixes in KNN, NaiveBayes, and RegressionMetric

* test: finished unit tests except for StatisticalTest

Also made various small fixes and style changes

* StatisticalTest v 1.0.1

* fixed RegressionMetric unit test
temporarily disabled CorrelationTest unit tests

* tra_analysis v 2.1.0-alpha.3

* readded __all__

* fix: floating point issues in unit tests for CorrelationTest

Co-authored-by: AGawde05 <agawde05@gmail.com>
Co-authored-by: ltcptgeneral <learthurgo@gmail.com>
Co-authored-by: Dev Singh <dev@devksingh.com>
Co-authored-by: jzpan1 <panzhenyu2014@gmail.com>

* fixed depreciated escape sequences

* ficed tests, indent, import in test_analysis

* changed version to 3.0.0
added backwards compatibility

* ficed pytest install in container

* removed GUI changes

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* incremented version to rc.1 (release candidate 1)

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* fixed NaiveBayes __changelog__

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* fix: __setitem__  == to single =

* Array v 1.0.1

* Revert "Array v 1.0.1"

This reverts commit 59783b79f7.

* Array v 1.0.1

* Array.py v 1.0.2
added more Array unit tests

* cleaned .gitignore
tra_analysis v 3.0.0-rc2

Signed-off-by: Arthur Lu <learthurgo@gmail.com>

* added *.pyc to gitignore
finished subdividing test_analysis

* feat: gui layout + basic func

* Froze and removed superscript (data-analysis)

* remove data-analysis deps install for devcontainer

* tukey pairwise comparison and multicomparison but no critical q-values

* quick patch for devcontainer.json

* better fix for devcontainer.json

* fixed some styling in StatisticalTest
removed print statement in StatisticalTest unit tests

* update analysis tests to be more effecient

* don't use loop for test_nativebayes

* removed useless secondary docker files

* tra-analysis v 3.0.0

Co-authored-by: James Pan <panzhenyu2014@gmail.com>
Co-authored-by: AGawde05 <agawde05@gmail.com>
Co-authored-by: zpan1 <72054510+zpan1@users.noreply.github.com>
Co-authored-by: Dev Singh <dev@devksingh.com>
Co-authored-by: = <=>
Co-authored-by: Dev Singh <dsingh@imsa.edu>
Co-authored-by: zpan1 <zpan@imsa.edu>
2021-04-28 19:33:50 -05:00

223 lines
6.9 KiB
Python

# Titan Robotics Team 2022: CUDA-based Regressions Module
# Not actively maintained, may be removed in future release
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
# setup:
__version__ = "0.0.4"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
0.0.4:
- bug fixes
- fixed changelog
0.0.3:
- bug fixes
0.0.2:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
0.0.1:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain',
'CircleFit'
]
import torch
global device
device = "cuda:0" if torch.cuda.is_available() else "cpu"
#todo: document completely
def set_device(self, new_device):
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=self.num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def num_poly_terms(self,num_vars, power):
if power == 0:
return 0
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
def factorial(self,n):
if n==0:
return 1
else:
return n*self.factorial(n-1)
def take_all_pwrs(self, vec, pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
for i in torch.t(combins).to(device).to(torch.float):
out *= i
if pwr == 1:
return out
else:
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(self.take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel