mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 17:49:09 +00:00
60beaa4563
* reflected doc changes to README.md
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* tra_analysis v 2.1.0-alpha.1
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* changed setup.py to use __version__ from source
added Topic and keywords
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* updated Supported Platforms in README.md
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved required files back to parent
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved security back to parent
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved security back to parent
moved contributing back to parent
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* add PR template
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved to parent folder
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* moved meta files to .github folder
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* Analysis.py v 3.0.1
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* updated test_analysis for submodules, and added missing numpy import in Sort.py
* fixed item one of Issue #58
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* readded cache searching in postCreateCommand
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* added myself as an author
* feat: created kivy gui boilerplate
* added Kivy to requirements.txt
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* feat: gui with placeholders
* fix: changed config.json path
* migrated docker base image to debian
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* style: spaces to tabs
* migrated to ubuntu
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fixed issues
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fix: docker build?
* fix: use ubuntu bionic
* fix: get kivy installed
* @ltcptgeneral can't spell
* optim dockerfile for not installing unused packages
* install basic stuff while building the container
* use prebuilt image for development
* install pylint on base image
* rename and use new kivy
* tests: added tests for Array and CorrelationTest
Both are not working due to errors
* use new thing
* use 20.04 base
* symlink pip3 to pip
* use pip instead of pip3
* equation.Expression.py v 0.0.1-alpha
added corresponding .pyc to .gitignore
* parser.py v 0.0.2-alpha
* added pyparsing to requirements.txt
* parser v 0.0.4-alpha
* Equation v 0.0.1-alpha
* added Equation to tra_analysis imports
* tests: New unit tests for submoduling (#66)
* feat: created kivy gui boilerplate
* migrated docker base image to debian
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* migrated to ubuntu
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fixed issues
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fix: docker build?
* fix: use ubuntu bionic
* fix: get kivy installed
* @ltcptgeneral can't spell
* optim dockerfile for not installing unused packages
* install basic stuff while building the container
* use prebuilt image for development
* install pylint on base image
* rename and use new kivy
* tests: added tests for Array and CorrelationTest
Both are not working due to errors
* fix: Array no longer has *args and CorrelationTest functions no longer have self in the arguments
* use new thing
* use 20.04 base
* symlink pip3 to pip
* use pip instead of pip3
* tra_analysis v 2.1.0-alpha.2
SVM v 1.0.1
added unvalidated SVM unit tests
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* fixed version number
Signed-off-by: ltcptgeneral <learthurgo@gmail.com>
* tests: added tests for ClassificationMetric
* partially fixed and commented out svm unit tests
* fixed some SVM unit tests
* added installing pytest to devcontainer.json
* fix: small fixes to KNN
Namely, removing self from parameters and passing correct arguments to KNeighborsClassifier constructor
* fix, test: Added tests for KNN and NaiveBayes.
Also made some small fixes in KNN, NaiveBayes, and RegressionMetric
* test: finished unit tests except for StatisticalTest
Also made various small fixes and style changes
* StatisticalTest v 1.0.1
* fixed RegressionMetric unit test
temporarily disabled CorrelationTest unit tests
* tra_analysis v 2.1.0-alpha.3
* readded __all__
* fix: floating point issues in unit tests for CorrelationTest
Co-authored-by: AGawde05 <agawde05@gmail.com>
Co-authored-by: ltcptgeneral <learthurgo@gmail.com>
Co-authored-by: Dev Singh <dev@devksingh.com>
Co-authored-by: jzpan1 <panzhenyu2014@gmail.com>
* fixed depreciated escape sequences
* ficed tests, indent, import in test_analysis
* changed version to 3.0.0
added backwards compatibility
* ficed pytest install in container
* removed GUI changes
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* incremented version to rc.1 (release candidate 1)
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* fixed NaiveBayes __changelog__
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* fix: __setitem__ == to single =
* Array v 1.0.1
* Revert "Array v 1.0.1"
This reverts commit 59783b79f7
.
* Array v 1.0.1
* Array.py v 1.0.2
added more Array unit tests
* cleaned .gitignore
tra_analysis v 3.0.0-rc2
Signed-off-by: Arthur Lu <learthurgo@gmail.com>
* added *.pyc to gitignore
finished subdividing test_analysis
* feat: gui layout + basic func
* Froze and removed superscript (data-analysis)
* remove data-analysis deps install for devcontainer
* tukey pairwise comparison and multicomparison but no critical q-values
* quick patch for devcontainer.json
* better fix for devcontainer.json
* fixed some styling in StatisticalTest
removed print statement in StatisticalTest unit tests
* update analysis tests to be more effecient
* don't use loop for test_nativebayes
* removed useless secondary docker files
* tra-analysis v 3.0.0
Co-authored-by: James Pan <panzhenyu2014@gmail.com>
Co-authored-by: AGawde05 <agawde05@gmail.com>
Co-authored-by: zpan1 <72054510+zpan1@users.noreply.github.com>
Co-authored-by: Dev Singh <dev@devksingh.com>
Co-authored-by: = <=>
Co-authored-by: Dev Singh <dsingh@imsa.edu>
Co-authored-by: zpan1 <zpan@imsa.edu>
223 lines
6.9 KiB
Python
223 lines
6.9 KiB
Python
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
|
# Not actively maintained, may be removed in future release
|
|
# Written by Arthur Lu & Jacob Levine
|
|
# Notes:
|
|
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
|
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
|
# setup:
|
|
|
|
__version__ = "0.0.4"
|
|
|
|
# changelog should be viewed using print(analysis.regression.__changelog__)
|
|
__changelog__ = """
|
|
0.0.4:
|
|
- bug fixes
|
|
- fixed changelog
|
|
0.0.3:
|
|
- bug fixes
|
|
0.0.2:
|
|
-Added more parameters to log, exponential, polynomial
|
|
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
|
to train the scaling and shifting of sigmoids
|
|
0.0.1:
|
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
|
-already vectorized (except for polynomial generation) and CUDA-optimized
|
|
"""
|
|
|
|
__author__ = (
|
|
"Jacob Levine <jlevine@imsa.edu>",
|
|
"Arthur Lu <learthurgo@gmail.com>",
|
|
)
|
|
|
|
__all__ = [
|
|
'factorial',
|
|
'take_all_pwrs',
|
|
'num_poly_terms',
|
|
'set_device',
|
|
'LinearRegKernel',
|
|
'SigmoidalRegKernel',
|
|
'LogRegKernel',
|
|
'PolyRegKernel',
|
|
'ExpRegKernel',
|
|
'SigmoidalRegKernelArthur',
|
|
'SGDTrain',
|
|
'CustomTrain',
|
|
'CircleFit'
|
|
]
|
|
|
|
import torch
|
|
|
|
global device
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
#todo: document completely
|
|
|
|
def set_device(self, new_device):
|
|
device=new_device
|
|
|
|
class LinearRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
bias=None
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.bias]
|
|
def forward(self,mtx):
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
return torch.matmul(self.weights,mtx)+long_bias
|
|
|
|
class SigmoidalRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
bias=None
|
|
sigmoid=torch.nn.Sigmoid()
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.bias]
|
|
def forward(self,mtx):
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
|
|
|
class SigmoidalRegKernelArthur():
|
|
parameters= []
|
|
weights=None
|
|
in_bias=None
|
|
scal_mult=None
|
|
out_bias=None
|
|
sigmoid=torch.nn.Sigmoid()
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
def forward(self,mtx):
|
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
|
|
class LogRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
in_bias=None
|
|
scal_mult=None
|
|
out_bias=None
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
def forward(self,mtx):
|
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
|
|
class ExpRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
in_bias=None
|
|
scal_mult=None
|
|
out_bias=None
|
|
def __init__(self, num_vars):
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
|
def forward(self,mtx):
|
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
|
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
|
|
|
class PolyRegKernel():
|
|
parameters= []
|
|
weights=None
|
|
bias=None
|
|
power=None
|
|
def __init__(self, num_vars, power):
|
|
self.power=power
|
|
num_terms=self.num_poly_terms(num_vars, power)
|
|
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
self.parameters=[self.weights,self.bias]
|
|
def num_poly_terms(self,num_vars, power):
|
|
if power == 0:
|
|
return 0
|
|
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
|
def factorial(self,n):
|
|
if n==0:
|
|
return 1
|
|
else:
|
|
return n*self.factorial(n-1)
|
|
def take_all_pwrs(self, vec, pwr):
|
|
#todo: vectorize (kinda)
|
|
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
|
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
|
for i in torch.t(combins).to(device).to(torch.float):
|
|
out *= i
|
|
if pwr == 1:
|
|
return out
|
|
else:
|
|
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
|
def forward(self,mtx):
|
|
#TODO: Vectorize the last part
|
|
cols=[]
|
|
for i in torch.t(mtx):
|
|
cols.append(self.take_all_pwrs(i,self.power))
|
|
new_mtx=torch.t(torch.stack(cols))
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
return torch.matmul(self.weights,new_mtx)+long_bias
|
|
|
|
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
|
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
|
data_cuda=data.to(device)
|
|
ground_cuda=ground.to(device)
|
|
if (return_losses):
|
|
losses=[]
|
|
for i in range(iterations):
|
|
with torch.set_grad_enabled(True):
|
|
optim.zero_grad()
|
|
pred=kernel.forward(data_cuda)
|
|
ls=loss(pred,ground_cuda)
|
|
losses.append(ls.item())
|
|
ls.backward()
|
|
optim.step()
|
|
return [kernel,losses]
|
|
else:
|
|
for i in range(iterations):
|
|
with torch.set_grad_enabled(True):
|
|
optim.zero_grad()
|
|
pred=kernel.forward(data_cuda)
|
|
ls=loss(pred,ground_cuda)
|
|
ls.backward()
|
|
optim.step()
|
|
return kernel
|
|
|
|
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
|
data_cuda=data.to(device)
|
|
ground_cuda=ground.to(device)
|
|
if (return_losses):
|
|
losses=[]
|
|
for i in range(iterations):
|
|
with torch.set_grad_enabled(True):
|
|
optim.zero_grad()
|
|
pred=kernel.forward(data)
|
|
ls=loss(pred,ground)
|
|
losses.append(ls.item())
|
|
ls.backward()
|
|
optim.step()
|
|
return [kernel,losses]
|
|
else:
|
|
for i in range(iterations):
|
|
with torch.set_grad_enabled(True):
|
|
optim.zero_grad()
|
|
pred=kernel.forward(data_cuda)
|
|
ls=loss(pred,ground_cuda)
|
|
ls.backward()
|
|
optim.step()
|
|
return kernel
|