#Titan Robotics Team 2022: Data Analysis Script #Written by Arthur Lu & Jacob Levine #Notes: #setup: __version__ = "1.0.3.000" __changelog__ = """changelog: 1.0.3.000: - actually processes data 1.0.2.000: - added data reading from folder - nearly crashed computer reading from 20 GiB of data 1.0.1.000: - added data reading from file - added superstructure to code 1.0.0.000: - added import statements (revolutionary) """ __author__ = ( "Arthur Lu , " "Jacob Levine ," ) import analysis import titanlearn import visualization import os import glob #get all the data source_dir = 'data' file_list = glob.glob(source_dir + '/*.csv') #supposedly sorts by alphabetical order, skips reading teams.csv because of redundancy data = [] files = [fn for fn in glob.glob('data/*.csv') if not os.path.basename(fn).startswith('teams')] #for file_path in file_list: # if not os.path.basename(file_list).startswith("teams") # data.append(analysis.load_csv(file_path)) for i in files: data.append(analysis.load_csv(i)) stats = [] measure_stats = [] teams = analysis.load_csv("data/teams.csv") #assumes that team number is in the first column, and that the order of teams is the same across all files #unhelpful comment for measure in data: #unpacks 3d array into 2ds for i in range(len(measure)): #unpacks into specific teams line = measure[i] line.pop(0) #removes team identifier measure_stats.append(teams[i] + list(analysis.basic_stats(line, 0, 0))) stats.append(list(measure_stats)) print (stats) # print(d) #print (stats)