import numpy as np import sklearn from sklearn import metrics from tra_analysis import Analysis as an from tra_analysis import Array from tra_analysis import ClassificationMetric from tra_analysis import Clustering from tra_analysis import CorrelationTest from tra_analysis import Fit from tra_analysis import KNN from tra_analysis import NaiveBayes from tra_analysis import RandomForest from tra_analysis import RegressionMetric from tra_analysis import Sort from tra_analysis import StatisticalTest from tra_analysis import SVM from tra_analysis.equation.parser import BNF test_data_linear = [1, 3, 6, 7, 9] test_data_linear2 = [2, 2, 5, 7, 13] test_data_linear3 = [2, 5, 8, 6, 14] test_data_array = Array(test_data_linear) x_data_circular = [] y_data_circular = [] y_data_ccu = [1, 3, 7, 14, 21] y_data_ccd = [1, 5, 7, 8.5, 8.66] test_data_scrambled = [-32, 34, 19, 72, -65, -11, -43, 6, 85, -17, -98, -26, 12, 20, 9, -92, -40, 98, -78, 17, -20, 49, 93, -27, -24, -66, 40, 84, 1, -64, -68, -25, -42, -46, -76, 43, -3, 30, -14, -34, -55, -13, 41, -30, 0, -61, 48, 23, 60, 87, 80, 77, 53, 73, 79, 24, -52, 82, 8, -44, 65, 47, -77, 94, 7, 37, -79, 36, -94, 91, 59, 10, 97, -38, -67, 83, 54, 31, -95, -63, 16, -45, 21, -12, 66, -48, -18, -96, -90, -21, -83, -74, 39, 64, 69, -97, 13, 55, 27, -39] test_data_sorted = [-98, -97, -96, -95, -94, -92, -90, -83, -79, -78, -77, -76, -74, -68, -67, -66, -65, -64, -63, -61, -55, -52, -48, -46, -45, -44, -43, -42, -40, -39, -38, -34, -32, -30, -27, -26, -25, -24, -21, -20, -18, -17, -14, -13, -12, -11, -3, 0, 1, 6, 7, 8, 9, 10, 12, 13, 16, 17, 19, 20, 21, 23, 24, 27, 30, 31, 34, 36, 37, 39, 40, 41, 43, 47, 48, 49, 53, 54, 55, 59, 60, 64, 65, 66, 69, 72, 73, 77, 79, 80, 82, 83, 84, 85, 87, 91, 93, 94, 97, 98] test_data_2D_pairs = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) test_data_2D_positive = np.array([[23, 51], [21, 32], [15, 25], [17, 31]]) test_output = np.array([1, 3, 4, 5]) test_labels_2D_pairs = np.array([1, 1, 2, 2]) validation_data_2D_pairs = np.array([[-0.8, -1], [0.8, 1.2]]) validation_labels_2D_pairs = np.array([1, 2]) def test_basicstats(): assert an.basic_stats(test_data_linear) == {"mean": 5.2, "median": 6.0, "standard-deviation": 2.85657137141714, "variance": 8.16, "minimum": 1.0, "maximum": 9.0} assert an.z_score(3.2, 6, 1.5) == -1.8666666666666665 assert an.z_normalize([test_data_linear], 1).tolist() == [[0.07537783614444091, 0.22613350843332272, 0.45226701686664544, 0.5276448530110863, 0.6784005252999682]] def test_regression(): assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["lin"])) == True #assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccd, ["log"])) == True #assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["exp"])) == True #assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccu, ["ply"])) == True #assert all(isinstance(item, str) for item in an.regression(test_data_linear, y_data_ccd, ["sig"])) == True def test_metrics(): assert an.Metric().elo(1500, 1500, [1, 0], 400, 24) == 1512.0 assert an.Metric().glicko2(1500, 250, 0.06, [1500, 1400], [250, 240], [1, 0]) == (1478.864307445517, 195.99122679202452, 0.05999602937563585) #assert an.Metric().trueskill([[(25, 8.33), (24, 8.25), (32, 7.5)], [(25, 8.33), (25, 8.33), (21, 6.5)]], [1, 0]) == [(metrics.trueskill.Rating(mu=21.346, sigma=7.875), metrics.trueskill.Rating(mu=20.415, sigma=7.808), metrics.trueskill.Rating(mu=29.037, sigma=7.170)), (metrics.trueskill.Rating(mu=28.654, sigma=7.875), metrics.trueskill.Rating(mu=28.654, sigma=7.875), metrics.trueskill.Rating(mu=23.225, sigma=6.287))] def test_array(): assert test_data_array.elementwise_mean() == 5.2 assert test_data_array.elementwise_median() == 6.0 assert test_data_array.elementwise_stdev() == 2.85657137141714 assert test_data_array.elementwise_variance() == 8.16 assert test_data_array.elementwise_npmin() == 1 assert test_data_array.elementwise_npmax() == 9 assert test_data_array.elementwise_stats() == (5.2, 6.0, 2.85657137141714, 8.16, 1, 9) for i in range(len(test_data_array)): assert test_data_array[i] == test_data_linear[i] test_data_array[0] = 100 expected = [100, 3, 6, 7, 9] for i in range(len(test_data_array)): assert test_data_array[i] == expected[i] def test_classifmetric(): classif_metric = ClassificationMetric(test_data_linear2, test_data_linear) assert classif_metric[0].all() == metrics.confusion_matrix(test_data_linear, test_data_linear2).all() assert classif_metric[1] == metrics.classification_report(test_data_linear, test_data_linear2) def test_correlationtest(): assert all(np.isclose(list(CorrelationTest.anova_oneway(test_data_linear, test_data_linear2).values()), [0.05825242718446602, 0.8153507906592907], rtol=1e-10)) assert all(np.isclose(list(CorrelationTest.pearson(test_data_linear, test_data_linear2).values()), [0.9153061540753287, 0.02920895440940868], rtol=1e-10)) assert all(np.isclose(list(CorrelationTest.spearman(test_data_linear, test_data_linear2).values()), [0.9746794344808964, 0.004818230468198537], rtol=1e-10)) assert all(np.isclose(list(CorrelationTest.point_biserial(test_data_linear, test_data_linear2).values()), [0.9153061540753287, 0.02920895440940868], rtol=1e-10)) assert all(np.isclose(list(CorrelationTest.kendall(test_data_linear, test_data_linear2).values()), [0.9486832980505137, 0.022977401503206086], rtol=1e-10)) assert all(np.isclose(list(CorrelationTest.kendall_weighted(test_data_linear, test_data_linear2).values()), [0.9750538072369643, np.nan], rtol=1e-10, equal_nan=True)) def test_fit(): assert Fit.CircleFit(x=[0,0,-1,1], y=[1, -1, 0, 0]).LSC() == (0.0, 0.0, 1.0, 0.0) def test_knn(): model, metric = KNN.knn_classifier(test_data_2D_pairs, test_labels_2D_pairs, 2) assert isinstance(model, sklearn.neighbors.KNeighborsClassifier) assert np.array([[0,0], [2,0]]).all() == metric[0].all() assert ' precision recall f1-score support\n\n 1 0.00 0.00 0.00 0.0\n 2 0.00 0.00 0.00 2.0\n\n accuracy 0.00 2.0\n macro avg 0.00 0.00 0.00 2.0\nweighted avg 0.00 0.00 0.00 2.0\n' == metric[1] model, metric = KNN.knn_regressor(test_data_2D_pairs, test_output, 2) assert isinstance(model, sklearn.neighbors.KNeighborsRegressor) assert (-25.0, 6.5, 2.5495097567963922) == metric def test_naivebayes(): model, metric = NaiveBayes.gaussian(test_data_2D_pairs, test_labels_2D_pairs) assert isinstance(model, sklearn.naive_bayes.GaussianNB) assert metric[0].all() == np.array([[0, 0], [2, 0]]).all() model, metric = NaiveBayes.multinomial(test_data_2D_positive, test_labels_2D_pairs) assert isinstance(model, sklearn.naive_bayes.MultinomialNB) assert metric[0].all() == np.array([[0, 0], [2, 0]]).all() model, metric = NaiveBayes.bernoulli(test_data_2D_pairs, test_labels_2D_pairs) assert isinstance(model, sklearn.naive_bayes.BernoulliNB) assert metric[0].all() == np.array([[0, 0], [2, 0]]).all() model, metric = NaiveBayes.complement(test_data_2D_positive, test_labels_2D_pairs) assert isinstance(model, sklearn.naive_bayes.ComplementNB) assert metric[0].all() == np.array([[0, 0], [2, 0]]).all() def test_randomforest(): model, metric = RandomForest.random_forest_classifier(test_data_2D_pairs, test_labels_2D_pairs, 0.3, 2) assert isinstance(model, sklearn.ensemble.RandomForestClassifier) assert metric[0].all() == np.array([[0, 0], [2, 0]]).all() model, metric = RandomForest.random_forest_regressor(test_data_2D_pairs, test_labels_2D_pairs, 0.3, 2) assert isinstance(model, sklearn.ensemble.RandomForestRegressor) assert metric == (0.0, 1.0, 1.0) def test_regressionmetric(): assert RegressionMetric(test_data_linear, test_data_linear2)== (0.7705314009661837, 3.8, 1.9493588689617927) def test_sort(): sorts = [Sort.quicksort, Sort.mergesort, Sort.heapsort, Sort.introsort, Sort.insertionsort, Sort.timsort, Sort.selectionsort, Sort.shellsort, Sort.bubblesort, Sort.cyclesort, Sort.cocktailsort] for sort in sorts: assert all(a == b for a, b in zip(sort(test_data_scrambled), test_data_sorted)) def test_statisticaltest(): #print(StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3])) assert StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3]) == \ {'group 1 and group 2': [0.32571517201527916, False], 'group 1 and group 3': [0.977145516045838, False], 'group 2 and group 3': [0.6514303440305589, False]} #assert all(np.isclose([i[0] for i in list(StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3]).values], # [0.32571517201527916, 0.977145516045838, 0.6514303440305589])) #assert [i[1] for i in StatisticalTest.tukey_multicomparison([test_data_linear, test_data_linear2, test_data_linear3]).values] == \ # [False, False, False] def test_svm(): data = test_data_2D_pairs labels = test_labels_2D_pairs test_data = validation_data_2D_pairs test_labels = validation_labels_2D_pairs lin_kernel = SVM.PrebuiltKernel.Linear() #ply_kernel = SVM.PrebuiltKernel.Polynomial(3, 0) rbf_kernel = SVM.PrebuiltKernel.RBF('scale') sig_kernel = SVM.PrebuiltKernel.Sigmoid(0) lin_kernel = SVM.fit(lin_kernel, data, labels) #ply_kernel = SVM.fit(ply_kernel, data, labels) rbf_kernel = SVM.fit(rbf_kernel, data, labels) sig_kernel = SVM.fit(sig_kernel, data, labels) for i in range(len(test_data)): assert lin_kernel.predict([test_data[i]]).tolist() == [test_labels[i]] #for i in range(len(test_data)): # assert ply_kernel.predict([test_data[i]]).tolist() == [test_labels[i]] for i in range(len(test_data)): assert rbf_kernel.predict([test_data[i]]).tolist() == [test_labels[i]] for i in range(len(test_data)): assert sig_kernel.predict([test_data[i]]).tolist() == [test_labels[i]] def test_equation(): parser = BNF() correctParse = { "9": 9.0, "-9": -9.0, "--9": 9.0, "-E": -2.718281828459045, "9 + 3 + 6": 18.0, "9 + 3 / 11": 9.272727272727273, "(9 + 3)": 12.0, "(9+3) / 11": 1.0909090909090908, "9 - 12 - 6": -9.0, "9 - (12 - 6)": 3.0, "2*3.14159": 6.28318, "3.1415926535*3.1415926535 / 10": 0.9869604400525172, "PI * PI / 10": 0.9869604401089358, "PI*PI/10": 0.9869604401089358, "PI^2": 9.869604401089358, "round(PI^2)": 10, "6.02E23 * 8.048": 4.844896e+24, "e / 3": 0.9060939428196817, "sin(PI/2)": 1.0, "10+sin(PI/4)^2": 10.5, "trunc(E)": 2, "trunc(-E)": -2, "round(E)": 3, "round(-E)": -3, "E^PI": 23.140692632779263, "exp(0)": 1.0, "exp(1)": 2.718281828459045, "2^3^2": 512.0, "(2^3)^2": 64.0, "2^3+2": 10.0, "2^3+5": 13.0, "2^9": 512.0, "sgn(-2)": -1, "sgn(0)": 0, "sgn(0.1)": 1, "sgn(cos(PI/4))": 1, "sgn(cos(PI/2))": 0, "sgn(cos(PI*3/4))": -1, "+(sgn(cos(PI/4)))": 1, "-(sgn(cos(PI/4)))": -1, } for key in list(correctParse.keys()): assert parser.eval(key) == correctParse[key] def test_clustering(): data = X = np.array([[1, 2], [2, 2], [2, 3], [8, 7], [8, 8], [25, 80]]) assert Clustering.dbscan(data, eps=3, min_samples=2).tolist() == [0, 0, 0, 1, 1, -1] data = np.array([[1, 1], [2, 1], [1, 0], [4, 7], [3, 5], [3, 6]]) assert Clustering.spectral(data, n_clusters=2, assign_labels='discretize', random_state=0).tolist() == [1, 1, 1, 0, 0, 0]