# Titan Robotics Team 2022: Analysis Module # Written by Arthur Lu # Notes: # this should be imported as a python module using 'from tra_analysis import Analysis' # this should be included in the local directory or environment variable # this module has been optimized for multhreaded computing # current benchmark of optimization: 1.33 times faster # setup: __version__ = "3.0.3" # changelog should be viewed using print(analysis.__changelog__) __changelog__ = """changelog: 3.0.3: - fixed spelling of deprecate 3.0.2: - fixed __all__ 3.0.1: - removed numba dependency and calls 3.0.0: - exported several submodules to their own files while preserving backwards compatibility: - Array - ClassificationMetric - CorrelationTest - KNN - NaiveBayes - RandomForest - RegressionMetric - Sort - StatisticalTest - SVM - note: above listed submodules will not be supported in the future - future changes to all submodules will be held in their respective changelogs - future changes altering the parent package will be held in the __changelog__ of the parent package (in __init__.py) - changed reference to module name to Analysis 2.3.1: - fixed bugs in Array class 2.3.0: - overhauled Array class 2.2.3: - fixed spelling of RandomForest - made n_neighbors required for KNN - made n_classifiers required for SVM 2.2.2: - fixed 2.2.1 changelog entry - changed regression to return dictionary 2.2.1: - changed all references to parent package analysis to tra_analysis 2.2.0: - added Sort class - added several array sorting functions to Sort class including: - quick sort - merge sort - intro(spective) sort - heap sort - insertion sort - tim sort - selection sort - bubble sort - cycle sort - cocktail sort - tested all sorting algorithms with both lists and numpy arrays - deprecated sort function from Array class - added warnings as an import 2.1.4: - added sort and search functions to Array class 2.1.3: - changed output of basic_stats and histo_analysis to libraries - fixed __all__ 2.1.2: - renamed ArrayTest class to Array 2.1.1: - added add, mul, neg, and inv functions to ArrayTest class - added normalize function to ArrayTest class - added dot and cross functions to ArrayTest class 2.1.0: - added ArrayTest class - added elementwise mean, median, standard deviation, variance, min, max functions to ArrayTest class - added elementwise_stats to ArrayTest which encapsulates elementwise statistics - appended to __all__ to reflect changes 2.0.6: - renamed func functions in regression to lin, log, exp, and sig 2.0.5: - moved random_forrest_regressor and random_forrest_classifier to RandomForrest class - renamed Metrics to Metric - renamed RegressionMetrics to RegressionMetric - renamed ClassificationMetrics to ClassificationMetric - renamed CorrelationTests to CorrelationTest - renamed StatisticalTests to StatisticalTest - reflected rafactoring to all mentions of above classes/functions 2.0.4: - fixed __all__ to reflected the correct functions and classes - fixed CorrelationTests and StatisticalTests class functions to require self invocation - added missing math import - fixed KNN class functions to require self invocation - fixed Metrics class functions to require self invocation - various spelling fixes in CorrelationTests and StatisticalTests 2.0.3: - bug fixes with CorrelationTests and StatisticalTests - moved glicko2 and trueskill to the metrics subpackage - moved elo to a new metrics subpackage 2.0.2: - fixed docs 2.0.1: - fixed docs 2.0.0: - cleaned up wild card imports with scipy and sklearn - added CorrelationTests class - added StatisticalTests class - added several correlation tests to CorrelationTests - added several statistical tests to StatisticalTests 1.13.9: - moved elo, glicko2, trueskill functions under class Metrics 1.13.8: - moved Glicko2 to a seperate package 1.13.7: - fixed bug with trueskill 1.13.6: - cleaned up imports 1.13.5: - cleaned up package 1.13.4: - small fixes to regression to improve performance 1.13.3: - filtered nans from regression 1.13.2: - removed torch requirement, and moved Regression back to regression.py 1.13.1: - bug fix with linear regression not returning a proper value - cleaned up regression - fixed bug with polynomial regressions 1.13.0: - fixed all regressions to now properly work 1.12.6: - fixed bg with a division by zero in histo_analysis 1.12.5: - fixed numba issues by removing numba from elo, glicko2 and trueskill 1.12.4: - renamed gliko to glicko 1.12.3: - removed deprecated code 1.12.2: - removed team first time trueskill instantiation in favor of integration in superscript.py 1.12.1: - improved readibility of regression outputs by stripping tensor data - used map with lambda to acheive the improved readibility - lost numba jit support with regression, and generated_jit hangs at execution - TODO: reimplement correct numba integration in regression 1.12.0: - temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures 1.11.010: - alphabeticaly ordered import lists 1.11.9: - bug fixes 1.11.8: - bug fixes 1.11.7: - bug fixes 1.11.6: - tested min and max - bug fixes 1.11.5: - added min and max in basic_stats 1.11.4: - bug fixes 1.11.3: - bug fixes 1.11.2: - consolidated metrics - fixed __all__ 1.11.1: - added test/train split to RandomForestClassifier and RandomForestRegressor 1.11.0: - added RandomForestClassifier and RandomForestRegressor - note: untested 1.10.0: - added numba.jit to remaining functions 1.9.2: - kernelized PCA and KNN 1.9.1: - fixed bugs with SVM and NaiveBayes 1.9.0: - added SVM class, subclasses, and functions - note: untested 1.8.0: - added NaiveBayes classification engine - note: untested 1.7.0: - added knn() - added confusion matrix to decisiontree() 1.6.2: - changed layout of __changelog to be vscode friendly 1.6.1: - added additional hyperparameters to decisiontree() 1.6.0: - fixed __version__ - fixed __all__ order - added decisiontree() 1.5.3: - added pca 1.5.2: - reduced import list - added kmeans clustering engine 1.5.1: - simplified regression by using .to(device) 1.5.0: - added polynomial regression to regression(); untested 1.4.0: - added trueskill() 1.3.2: - renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2 1.3.1: - changed glicko2() to return tuple instead of array 1.3.0: - added glicko2_engine class and glicko() - verified glicko2() accuracy 1.2.3: - fixed elo() 1.2.2: - added elo() - elo() has bugs to be fixed 1.2.1: - readded regrression import 1.2.0: - integrated regression.py as regression class - removed regression import - fixed metadata for regression class - fixed metadata for analysis class 1.1.1: - regression_engine() bug fixes, now actaully regresses 1.1.0: - added regression_engine() - added all regressions except polynomial 1.0.7: - updated _init_device() 1.0.6: - removed useless try statements 1.0.5: - removed impossible outcomes 1.0.4: - added performance metrics (r^2, mse, rms) 1.0.3: - resolved nopython mode for mean, median, stdev, variance 1.0.2: - snapped (removed) majority of uneeded imports - forced object mode (bad) on all jit - TODO: stop numba complaining about not being able to compile in nopython mode 1.0.1: - removed from sklearn import * to resolve uneeded wildcard imports 1.0.0: - removed c_entities,nc_entities,obstacles,objectives from __all__ - applied numba.jit to all functions - deprecated and removed stdev_z_split - cleaned up histo_analysis to include numpy and numba.jit optimizations - deprecated and removed all regression functions in favor of future pytorch optimizer - deprecated and removed all nonessential functions (basic_analysis, benchmark, strip_data) - optimized z_normalize using sklearn.preprocessing.normalize - TODO: implement kernel/function based pytorch regression optimizer 0.9.0: - refactored - numpyed everything - removed stats in favor of numpy functions 0.8.5: - minor fixes 0.8.4: - removed a few unused dependencies 0.8.3: - added p_value function 0.8.2: - updated __all__ correctly to contain changes made in v 0.8.0 and v 0.8.1 0.8.1: - refactors - bugfixes 0.8.0: - deprecated histo_analysis_old - deprecated debug - altered basic_analysis to take array data instead of filepath - refactor - optimization 0.7.2: - bug fixes 0.7.1: - bug fixes 0.7.0: - added tanh_regression (logistical regression) - bug fixes 0.6.5: - added z_normalize function to normalize dataset - bug fixes 0.6.4: - bug fixes 0.6.3: - bug fixes 0.6.2: - bug fixes 0.6.1: - corrected __all__ to contain all of the functions 0.6.0: - added calc_overfit, which calculates two measures of overfit, error and performance - added calculating overfit to optimize_regression 0.5.0: - added optimize_regression function, which is a sample function to find the optimal regressions - optimize_regression function filters out some overfit funtions (functions with r^2 = 1) - planned addition: overfit detection in the optimize_regression function 0.4.2: - added __changelog__ - updated debug function with log and exponential regressions 0.4.1: - added log regressions - added exponential regressions - added log_regression and exp_regression to __all__ 0.3.8: - added debug function to further consolidate functions 0.3.7: - added builtin benchmark function - added builtin random (linear) data generation function - added device initialization (_init_device) 0.3.6: - reorganized the imports list to be in alphabetical order - added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives 0.3.5: - major bug fixes - updated historical analysis - deprecated old historical analysis 0.3.4: - added __version__, __author__, __all__ - added polynomial regression - added root mean squared function - added r squared function 0.3.3: - bug fixes - added c_entities 0.3.2: - bug fixes - added nc_entities, obstacles, objectives - consolidated statistics.py to analysis.py 0.3.1: - compiled 1d, column, and row basic stats into basic stats function 0.3.0: - added historical analysis function 0.2.x: - added z score test 0.1.x: - major bug fixes 0.0.x: - added loading csv - added 1d, column, row basic stats """ __author__ = ( "Arthur Lu ", ) __all__ = [ 'load_csv', 'basic_stats', 'z_score', 'z_normalize', 'histo_analysis', 'regression', 'Metric', 'kmeans', 'pca', 'decisiontree', # all statistics functions left out due to integration in other functions ] # now back to your regularly scheduled programming: # imports (now in alphabetical order! v 0.3.006): import csv from tra_analysis.metrics import elo as Elo from tra_analysis.metrics import glicko2 as Glicko2 import math import numpy as np import scipy from scipy import optimize, stats import sklearn from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble from tra_analysis.metrics import trueskill as Trueskill import warnings # import submodules from .Array import Array from .ClassificationMetric import ClassificationMetric from .CorrelationTest_obj import CorrelationTest from .KNN_obj import KNN from .NaiveBayes_obj import NaiveBayes from .RandomForest_obj import RandomForest from .RegressionMetric import RegressionMetric from .Sort_obj import Sort from .StatisticalTest_obj import StatisticalTest from . import SVM class error(ValueError): pass def load_csv(filepath): with open(filepath, newline='') as csvfile: file_array = np.array(list(csv.reader(csvfile))) csvfile.close() return file_array # expects 1d array def basic_stats(data): data_t = np.array(data).astype(float) _mean = mean(data_t) _median = median(data_t) _stdev = stdev(data_t) _variance = variance(data_t) _min = npmin(data_t) _max = npmax(data_t) return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max} # returns z score with inputs of point, mean and standard deviation of spread def z_score(point, mean, stdev): score = (point - mean) / stdev return score # expects 2d array, normalizes across all axes def z_normalize(array, *args): array = np.array(array) for arg in args: array = sklearn.preprocessing.normalize(array, axis = arg) return array # expects 2d array of [x,y] def histo_analysis(hist_data): if len(hist_data[0]) > 2: hist_data = np.array(hist_data) derivative = np.array(len(hist_data) - 1, dtype = float) t = np.diff(hist_data) derivative = t[1] / t[0] np.sort(derivative) return {"mean": basic_stats(derivative)["mean"], "deviation": basic_stats(derivative)["standard-deviation"]} else: return None def regression(inputs, outputs, args): # inputs, outputs expects N-D array X = np.array(inputs) y = np.array(outputs) regressions = {} if 'lin' in args: # formula: ax + b try: def lin(x, a, b): return a * x + b popt, pcov = scipy.optimize.curve_fit(lin, X, y) coeffs = popt.flatten().tolist() regressions["lin"] = (str(coeffs[0]) + "*x+" + str(coeffs[1])) except Exception as e: pass if 'log' in args: # formula: a log (b(x + c)) + d try: def log(x, a, b, c, d): return a * np.log(b*(x + c)) + d popt, pcov = scipy.optimize.curve_fit(log, X, y) coeffs = popt.flatten().tolist() regressions["log"] = (str(coeffs[0]) + "*log(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3])) except Exception as e: pass if 'exp' in args: # formula: a e ^ (b(x + c)) + d try: def exp(x, a, b, c, d): return a * np.exp(b*(x + c)) + d popt, pcov = scipy.optimize.curve_fit(exp, X, y) coeffs = popt.flatten().tolist() regressions["exp"] = (str(coeffs[0]) + "*e^(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3])) except Exception as e: pass if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ... inputs = np.array([inputs]) outputs = np.array([outputs]) plys = {} limit = len(outputs[0]) for i in range(2, limit): model = sklearn.preprocessing.PolynomialFeatures(degree = i) model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression()) model = model.fit(np.rot90(inputs), np.rot90(outputs)) params = model.steps[1][1].intercept_.tolist() params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::]) params = params.flatten().tolist() temp = "" counter = 0 for param in params: temp += "(" + str(param) + "*x^" + str(counter) + ")" counter += 1 plys["x^" + str(i)] = (temp) regressions["ply"] = (plys) if 'sig' in args: # formula: a tanh (b(x + c)) + d try: def sig(x, a, b, c, d): return a * np.tanh(b*(x + c)) + d popt, pcov = scipy.optimize.curve_fit(sig, X, y) coeffs = popt.flatten().tolist() regressions["sig"] = (str(coeffs[0]) + "*tanh(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3])) except Exception as e: pass return regressions class Metric: def elo(self, starting_score, opposing_score, observed, N, K): return Elo.calculate(starting_score, opposing_score, observed, N, K) def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations): player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol) player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations) return (player.rating, player.rd, player.vol) def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]] team_ratings = [] for team in teams_data: team_temp = () for player in team: player = Trueskill.Rating(player[0], player[1]) team_temp = team_temp + (player,) team_ratings.append(team_temp) return Trueskill.rate(team_ratings, ranks=observations) def mean(data): return np.mean(data) def median(data): return np.median(data) def stdev(data): return np.std(data) def variance(data): return np.var(data) def npmin(data): return np.amin(data) def npmax(data): return np.amax(data) def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"): kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm) kernel.fit(data) predictions = kernel.predict(data) centers = kernel.cluster_centers_ return centers, predictions def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None): kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state) return kernel.fit_transform(data) def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth) model = model.fit(data_train,labels_train) predictions = model.predict(data_test) metrics = ClassificationMetric(predictions, labels_test) return model, metrics