# Titan Robotics Team 2022: CPU fitting models # Written by Dev Singh # Notes: # this module is cuda-optimized (as appropriate) and vectorized (except for one small part) # setup: __version__ = "0.0.1" # changelog should be viewed using print(analysis.fits.__changelog__) __changelog__ = """changelog: 0.0.1: - initial release, add circle fitting with LSC and HyperFit """ __author__ = ( "Dev Singh " ) __all__ = [ 'CircleFit' ] import numpy as np class CircleFit: """Class to fit data to a circle using both the Least Square Circle (LSC) method and the HyperFit method""" # For more information on the LSC method, see: # http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf def __init__(self, x, y, xy=None): if type(x) == list: x = np.array(x) if type(y) == list: y = np.array(y) if type(xy) == list: xy = np.array(xy) if xy != None: self.coords = xy self.ournp = np #todo: implement cupy correctly else: # following block combines x and y into one array if not already done self.coords = self.ournp.vstack(([x_data.T], [y_data.T])).T def calc_R(x, y, xc, yc): """Returns distance between center and point""" return self.ournp.sqrt((x-xc)**2 + (y-yc)**2) def f(c, x, y): """Returns distance between point and circle at c""" Ri = calc_R(x, y, *c) return Ri - Ri.mean() def LSC(self): """Fits given data to a circle and returns the center, radius, and variance""" x = coords[:, 0] y = coords[:, 1] # guessing at a center x_m = self.ournp.mean(x) y_m = self.ournp.mean(y) # calculation of the reduced coordinates u = x - x_m v = y - y_m # linear system defining the center (uc, vc) in reduced coordinates: # Suu * uc + Suv * vc = (Suuu + Suvv)/2 # Suv * uc + Svv * vc = (Suuv + Svvv)/2 Suv = self.ournp.sum(u*v) Suu = self.ournp.sum(u**2) Svv = self.ournp.sum(v**2) Suuv = self.ournp.sum(u**2 * v) Suvv = self.ournp.sum(u * v**2) Suuu = self.ournp.sum(u**3) Svvv = self.ournp.sum(v**3) # Solving the linear system A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]]) B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0 uc, vc = self.ournp.linalg.solve(A, B) xc_1 = x_m + uc yc_1 = y_m + vc # Calculate the distances from center (xc_1, yc_1) Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2) R_1 = self.ournp.mean(Ri_1) # calculate residual error residu_1 = self.ournp.sum((Ri_1-R_1)**2) return (xc_1, yc_1, R_1, residu_1) def HyperFit(self): raise AttributeError("HyperFit not yet implemented") pass