# Titan Robotics Team 2022: Data Analysis Module # Written by Arthur Lu & Jacob Levine # Notes: # this should be imported as a python module using 'import analysis' # this should be included in the local directory or environment variable # this module has not been optimized for multhreaded computing # number of easter eggs: 2 # setup: __version__ = "1.1.0.002" # changelog should be viewed using print(analysis.__changelog__) __changelog__ = """changelog: 1.1.0.002: - snapped (removed) majority of uneeded imports - forced object mode (bad) on all jit - TODO: stop numba complaining about not being able to compile in nopython mode 1.1.0.001: - removed from sklearn import * to resolve uneeded wildcard imports 1.1.0.000: - removed c_entities,nc_entities,obstacles,objectives from __all__ - applied numba.jit to all functions - depreciated and removed stdev_z_split - cleaned up histo_analysis to include numpy and numba.jit optimizations - depreciated and removed all regression functions in favor of future pytorch optimizer - depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data) - optimized z_normalize using sklearn.preprocessing.normalize - TODO: implement kernel/function based pytorch regression optimizer 1.0.9.000: - refactored - numpyed everything - removed stats in favor of numpy functions 1.0.8.005: - minor fixes 1.0.8.004: - removed a few unused dependencies 1.0.8.003: - added p_value function 1.0.8.002: - updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001 1.0.8.001: - refactors - bugfixes 1.0.8.000: - depreciated histo_analysis_old - depreciated debug - altered basic_analysis to take array data instead of filepath - refactor - optimization 1.0.7.002: - bug fixes 1.0.7.001: - bug fixes 1.0.7.000: - added tanh_regression (logistical regression) - bug fixes 1.0.6.005: - added z_normalize function to normalize dataset - bug fixes 1.0.6.004: - bug fixes 1.0.6.003: - bug fixes 1.0.6.002: - bug fixes 1.0.6.001: - corrected __all__ to contain all of the functions 1.0.6.000: - added calc_overfit, which calculates two measures of overfit, error and performance - added calculating overfit to optimize_regression 1.0.5.000: - added optimize_regression function, which is a sample function to find the optimal regressions - optimize_regression function filters out some overfit funtions (functions with r^2 = 1) - planned addition: overfit detection in the optimize_regression function 1.0.4.002: - added __changelog__ - updated debug function with log and exponential regressions 1.0.4.001: - added log regressions - added exponential regressions - added log_regression and exp_regression to __all__ 1.0.3.008: - added debug function to further consolidate functions 1.0.3.007: - added builtin benchmark function - added builtin random (linear) data generation function - added device initialization (_init_device) 1.0.3.006: - reorganized the imports list to be in alphabetical order - added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives 1.0.3.005: - major bug fixes - updated historical analysis - depreciated old historical analysis 1.0.3.004: - added __version__, __author__, __all__ - added polynomial regression - added root mean squared function - added r squared function 1.0.3.003: - bug fixes - added c_entities 1.0.3.002: - bug fixes - added nc_entities, obstacles, objectives - consolidated statistics.py to analysis.py 1.0.3.001: - compiled 1d, column, and row basic stats into basic stats function 1.0.3.000: - added historical analysis function 1.0.2.xxx: - added z score test 1.0.1.xxx: - major bug fixes 1.0.0.xxx: - added loading csv - added 1d, column, row basic stats """ __author__ = ( "Arthur Lu , " "Jacob Levine ," ) __all__ = [ '_init_device', 'load_csv', 'basic_stats', 'z_score', 'z_normalize', 'histo_analysis', # all statistics functions left out due to integration in other functions ] # now back to your regularly scheduled programming: # imports (now in alphabetical order! v 1.0.3.006): import csv import numba from numba import jit import numpy as np from sklearn import preprocessing class error(ValueError): pass def _init_device(setting, arg): # initiates computation device for ANNs if setting == "cuda": try: return torch.device(setting + ":" + str(arg) if torch.cuda.is_available() else "cpu") except: raise error("could not assign cuda or cpu") elif setting == "cpu": try: return torch.device("cpu") except: raise error("could not assign cpu") else: raise error("specified device does not exist") @jit(forceobj=True) def load_csv(filepath): with open(filepath, newline='') as csvfile: file_array = np.array(list(csv.reader(csvfile))) csvfile.close() return file_array # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row @jit(forceobj=True) def basic_stats(data): data_t = np.array(data).astype(float) _mean = mean(data_t) _median = median(data_t) _stdev = stdev(data_t) _variance = variance(data_t) return _mean, _median, _stdev, _variance # returns z score with inputs of point, mean and standard deviation of spread @jit(forceobj=True) def z_score(point, mean, stdev): score = (point - mean) / stdev return score # expects 2d array, normalizes across all axes @jit(forceobj=True) def z_normalize(array, *args): array = np.array(array) for arg in args: array = preprocessing.normalize(array, axis = arg) return array @jit(forceobj=True) # expects 2d array of [x,y] def histo_analysis(hist_data): hist_data = np.array(hist_data) derivative = np.array(len(hist_data) - 1, dtype = float) t = np.diff(hist_data) derivative = t[1] / t[0] np.sort(derivative) mean_derivative = basic_stats(derivative)[0] stdev_derivative = basic_stats(derivative)[3] return mean_derivative, stdev_derivative @jit(forceobj=True) def mean(data): return np.mean(data) @jit(forceobj=True) def median(data): return np.median(data) @jit(forceobj=True) def stdev(data): return np.std(data) @jit(forceobj=True) def variance(data): return np.var(data)