15 Commits

Author SHA1 Message Date
ltcptgeneral
7a58cd08e2 analysis pkg v 1.0.0.11
analysis.py v 1.1.13.009
superscript.py v 0.0.5.002
2020-04-12 02:51:40 +00:00
ltcptgeneral
337fae68ee analysis pkg v 1.0.0.10
analysis.py v 1.1.13.008
superscript.py v 0.0.5.001
2020-04-09 22:16:26 -05:00
art
5e71d05626 removed app from dep 2020-04-05 21:42:12 +00:00
art
01df42aa49 added gitgraph to vscode container 2020-04-05 21:36:12 +00:00
ltcptgeneral
33eea153c1 Merge pull request #8 from titanscout2022/containerization-testing
Containerization testing
2020-04-05 16:32:40 -05:00
art
114eee5d57 finalized changes to docker implements 2020-04-05 21:29:16 +00:00
ltcptgeneral
06f008746a Merge pull request #7 from titanscout2022/master
merge
2020-04-05 14:57:56 -05:00
art
4f9c4e0dbb verified and tested docker files 2020-04-05 19:53:01 +00:00
art
5697e8b79e created dockerfiles 2020-04-05 19:04:07 +00:00
ltcptgeneral
e054e66743 started on dockerfile 2020-04-05 12:46:21 -05:00
ltcptgeneral
c914bd3754 removed unessasary comment 2020-04-04 11:59:19 -05:00
ltcptgeneral
6c08885a53 created two new analysis variants
the existing amd64
new unpopulated arm64
2020-04-04 00:09:40 -05:00
ltcptgeneral
375befd0c4 analysis pkg v 1.0.0.9 2020-03-17 20:03:49 -05:00
ltcptgeneral
893d1fb1d0 analysis.py v 1.1.13.007 2020-03-16 22:05:52 -05:00
ltcptgeneral
6a426ae4cd a 2020-03-10 00:45:42 -05:00
57 changed files with 355 additions and 282 deletions

2
.devcontainer/Dockerfile Normal file
View File

@@ -0,0 +1,2 @@
FROM python
WORKDIR ~/

View File

@@ -0,0 +1,26 @@
{
"name": "TRA Analysis Development Environment",
"build": {
"dockerfile": "Dockerfile",
},
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"python.pythonPath": "/usr/local/bin/python",
"python.linting.enabled": true,
"python.linting.pylintEnabled": true,
"python.formatting.autopep8Path": "/usr/local/py-utils/bin/autopep8",
"python.formatting.blackPath": "/usr/local/py-utils/bin/black",
"python.formatting.yapfPath": "/usr/local/py-utils/bin/yapf",
"python.linting.banditPath": "/usr/local/py-utils/bin/bandit",
"python.linting.flake8Path": "/usr/local/py-utils/bin/flake8",
"python.linting.mypyPath": "/usr/local/py-utils/bin/mypy",
"python.linting.pycodestylePath": "/usr/local/py-utils/bin/pycodestyle",
"python.linting.pydocstylePath": "/usr/local/py-utils/bin/pydocstyle",
"python.linting.pylintPath": "/usr/local/py-utils/bin/pylint",
"python.testing.pytestPath": "/usr/local/py-utils/bin/pytest"
},
"extensions": [
"mhutchie.git-graph",
],
"postCreateCommand": "pip install -r analysis-master/analysis-amd64/requirements.txt"
}

4
.gitignore vendored
View File

@@ -19,4 +19,6 @@ data analysis/keys.txt
data analysis/check_for_new_matches.ipynb data analysis/check_for_new_matches.ipynb
data analysis/test.ipynb data analysis/test.ipynb
data analysis/visualize_pit.ipynb data analysis/visualize_pit.ipynb
data analysis/config/keys.config data analysis/config/keys.config
analysis-master/analysis/__pycache__/
data analysis/__pycache__/

View File

@@ -1,6 +1,6 @@
Metadata-Version: 2.1 Metadata-Version: 2.1
Name: analysis Name: analysis
Version: 1.0.0.8 Version: 1.0.0.11
Summary: analysis package developed by Titan Scouting for The Red Alliance Summary: analysis package developed by Titan Scouting for The Red Alliance
Home-page: https://github.com/titanscout2022/tr2022-strategy Home-page: https://github.com/titanscout2022/tr2022-strategy
Author: The Titan Scouting Team Author: The Titan Scouting Team

View File

@@ -1,6 +1,7 @@
setup.py setup.py
analysis/__init__.py analysis/__init__.py
analysis/analysis.py analysis/analysis.py
analysis/glicko2.py
analysis/regression.py analysis/regression.py
analysis/titanlearn.py analysis/titanlearn.py
analysis/trueskill.py analysis/trueskill.py

View File

@@ -7,10 +7,16 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.13.006" __version__ = "1.1.13.009"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.13.009:
- moved elo, glicko2, trueskill functions under class Metrics
1.1.13.008:
- moved Glicko2 to a seperate package
1.1.13.007:
- fixed bug with trueskill
1.1.13.006: 1.1.13.006:
- cleaned up imports - cleaned up imports
1.1.13.005: 1.1.13.005:
@@ -269,7 +275,6 @@ __all__ = [
'SVM', 'SVM',
'random_forest_classifier', 'random_forest_classifier',
'random_forest_regressor', 'random_forest_regressor',
'Glicko2',
# all statistics functions left out due to integration in other functions # all statistics functions left out due to integration in other functions
] ]
@@ -278,6 +283,7 @@ __all__ = [
# imports (now in alphabetical order! v 1.0.3.006): # imports (now in alphabetical order! v 1.0.3.006):
import csv import csv
from analysis import glicko2 as Glicko2
import numba import numba
from numba import jit from numba import jit
import numpy as np import numpy as np
@@ -442,32 +448,34 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
return regressions return regressions
def elo(starting_score, opposing_score, observed, N, K): class Metrics:
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N)) def elo(starting_score, opposing_score, observed, N, K):
return starting_score + K*(np.sum(observed) - np.sum(expected)) expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations): return starting_score + K*(np.sum(observed) - np.sum(expected))
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol) def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations) player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
return (player.rating, player.rd, player.vol) player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]] return (player.rating, player.rd, player.vol)
team_ratings = [] def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
for team in teams_data: team_ratings = []
team_temp = []
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp.append(player)
team_ratings.append(team_temp)
return Trueskill.rate(teams_data, observations) for team in teams_data:
team_temp = ()
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp = team_temp + (player,)
team_ratings.append(team_temp)
return Trueskill.rate(team_ratings, ranks=observations)
class RegressionMetrics(): class RegressionMetrics():
@@ -559,24 +567,25 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
return model, metrics return model, metrics
@jit(forceobj=True) class KNN:
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test) data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None): return model, ClassificationMetrics(predictions, labels_test)
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1) def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetrics(predictions, outputs_test) data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetrics(predictions, outputs_test)
class NaiveBayes: class NaiveBayes:
@@ -688,103 +697,4 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
kernel.fit(data_train, outputs_train) kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test) predictions = kernel.predict(data_test)
return kernel, RegressionMetrics(predictions, outputs_test) return kernel, RegressionMetrics(predictions, outputs_test)
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -0,0 +1,99 @@
import math
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -0,0 +1 @@
python setup.py sdist bdist_wheel || python3 setup.py sdist bdist_wheel

View File

@@ -7,10 +7,16 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.13.006" __version__ = "1.1.13.009"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.13.009:
- moved elo, glicko2, trueskill functions under class Metrics
1.1.13.008:
- moved Glicko2 to a seperate package
1.1.13.007:
- fixed bug with trueskill
1.1.13.006: 1.1.13.006:
- cleaned up imports - cleaned up imports
1.1.13.005: 1.1.13.005:
@@ -269,7 +275,6 @@ __all__ = [
'SVM', 'SVM',
'random_forest_classifier', 'random_forest_classifier',
'random_forest_regressor', 'random_forest_regressor',
'Glicko2',
# all statistics functions left out due to integration in other functions # all statistics functions left out due to integration in other functions
] ]
@@ -278,6 +283,7 @@ __all__ = [
# imports (now in alphabetical order! v 1.0.3.006): # imports (now in alphabetical order! v 1.0.3.006):
import csv import csv
from analysis import glicko2 as Glicko2
import numba import numba
from numba import jit from numba import jit
import numpy as np import numpy as np
@@ -442,32 +448,34 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
return regressions return regressions
def elo(starting_score, opposing_score, observed, N, K): class Metrics:
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N)) def elo(starting_score, opposing_score, observed, N, K):
return starting_score + K*(np.sum(observed) - np.sum(expected)) expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations): return starting_score + K*(np.sum(observed) - np.sum(expected))
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol) def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations) player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
return (player.rating, player.rd, player.vol) player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]] return (player.rating, player.rd, player.vol)
team_ratings = [] def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
for team in teams_data: team_ratings = []
team_temp = []
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp.append(player)
team_ratings.append(team_temp)
return Trueskill.rate(teams_data, observations) for team in teams_data:
team_temp = ()
for player in team:
player = Trueskill.Rating(player[0], player[1])
team_temp = team_temp + (player,)
team_ratings.append(team_temp)
return Trueskill.rate(team_ratings, ranks=observations)
class RegressionMetrics(): class RegressionMetrics():
@@ -559,24 +567,25 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
return model, metrics return model, metrics
@jit(forceobj=True) class KNN:
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetrics(predictions, labels_test) data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsClassifier()
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None): return model, ClassificationMetrics(predictions, labels_test)
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1) def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetrics(predictions, outputs_test) data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
model.fit(data_train, outputs_train)
predictions = model.predict(data_test)
return model, RegressionMetrics(predictions, outputs_test)
class NaiveBayes: class NaiveBayes:
@@ -688,103 +697,4 @@ def random_forest_regressor(data, outputs, test_size, n_estimators="warn", crite
kernel.fit(data_train, outputs_train) kernel.fit(data_train, outputs_train)
predictions = kernel.predict(data_test) predictions = kernel.predict(data_test)
return kernel, RegressionMetrics(predictions, outputs_test) return kernel, RegressionMetrics(predictions, outputs_test)
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

View File

@@ -0,0 +1,99 @@
import math
class Glicko2:
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,5 @@
FROM python
WORKDIR ~/
COPY ./ ./
RUN pip install -r requirements.txt
CMD ["bash"]

View File

@@ -0,0 +1,3 @@
cd ..
docker build -t tra-analysis-amd64-dev -f docker/Dockerfile .
docker run -it tra-analysis-amd64-dev

View File

@@ -0,0 +1,6 @@
numba
numpy
scipy
scikit-learn
six
matplotlib

View File

@@ -1,8 +1,14 @@
import setuptools import setuptools
requirements = []
with open("requirements.txt", 'r') as file:
for line in file:
requirements.append(line)
setuptools.setup( setuptools.setup(
name="analysis", # Replace with your own username name="analysis",
version="1.0.0.008", version="1.0.0.011",
author="The Titan Scouting Team", author="The Titan Scouting Team",
author_email="titanscout2022@gmail.com", author_email="titanscout2022@gmail.com",
description="analysis package developed by Titan Scouting for The Red Alliance", description="analysis package developed by Titan Scouting for The Red Alliance",
@@ -10,14 +16,7 @@ setuptools.setup(
long_description_content_type="text/markdown", long_description_content_type="text/markdown",
url="https://github.com/titanscout2022/tr2022-strategy", url="https://github.com/titanscout2022/tr2022-strategy",
packages=setuptools.find_packages(), packages=setuptools.find_packages(),
install_requires=[ install_requires=requirements,
"numba",
"numpy",
"scipy",
"scikit-learn",
"six",
"matplotlib"
],
license = "GNU General Public License v3.0", license = "GNU General Public License v3.0",
classifiers=[ classifiers=[
"Programming Language :: Python :: 3", "Programming Language :: Python :: 3",

View File

@@ -0,0 +1,3 @@
cd ..
docker build -t tra-analysis-amd64-dev -f docker/Dockerfile .
docker run -it tra-analysis-amd64-dev

View File

@@ -1 +0,0 @@
python3 setup.py sdist bdist_wheel

View File

@@ -0,0 +1,4 @@
requests
pymongo
pandas
dnspython

View File

@@ -3,12 +3,17 @@
# Notes: # Notes:
# setup: # setup:
__version__ = "0.0.5.000" __version__ = "0.0.5.002"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
0.0.5.002:
- made changes due to refactoring of analysis
0.0.5.001:
- text fixes
- removed matplotlib requirement
0.0.5.000: 0.0.5.000:
improved user interface - improved user interface
0.0.4.002: 0.0.4.002:
- removed unessasary code - removed unessasary code
0.0.4.001: 0.0.4.001:
@@ -84,7 +89,6 @@ __all__ = [
from analysis import analysis as an from analysis import analysis as an
import data as d import data as d
import numpy as np import numpy as np
import matplotlib.pyplot as plt
from os import system, name from os import system, name
from pathlib import Path from pathlib import Path
import time import time
@@ -284,11 +288,11 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
observations = {"red": 0.5, "blu": 0.5} observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"] red_elo_delta = an.Metrics.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"] blu_elo_delta = an.Metrics.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]]) new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metrics.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]]) new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metrics.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]} red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]} blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}