mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-27 01:59:08 +00:00
added TBA requests module
This commit is contained in:
parent
cc6a7697cf
commit
fd0d43d29c
94
data analysis/tbarequest.py
Normal file
94
data analysis/tbarequest.py
Normal file
@ -0,0 +1,94 @@
|
|||||||
|
#Titan Robotics Team 2022: TBA Requests Module
|
||||||
|
#Written by Arthur Lu & Jacob Levine
|
||||||
|
#Notes:
|
||||||
|
# this should be imported as a python module using 'import visualization'
|
||||||
|
# this should be included in the local directory or environment variable
|
||||||
|
# this module has not been optimized for multhreaded computing
|
||||||
|
#Number of easter eggs: none yet
|
||||||
|
#setup:
|
||||||
|
|
||||||
|
__version__ = "1.0.0.001"
|
||||||
|
|
||||||
|
#changelog should be viewed using print(analysis.__changelog__)
|
||||||
|
__changelog__ = """changelog:
|
||||||
|
1.0.0.xxx:
|
||||||
|
-added common requests and JSON processing"""
|
||||||
|
__author__ = (
|
||||||
|
"Arthur Lu <arthurlu@ttic.edu>, "
|
||||||
|
"Jacob Levine <jlevine@ttic.edu>,"
|
||||||
|
)
|
||||||
|
__all__ = [
|
||||||
|
'process_json_ret',
|
||||||
|
'req_all_events',
|
||||||
|
'req_event_matches',
|
||||||
|
'req_event_insights',
|
||||||
|
'req_event_elim_alli'
|
||||||
|
'req_team_events',
|
||||||
|
'req_team_matches'
|
||||||
|
]
|
||||||
|
#imports
|
||||||
|
import requests
|
||||||
|
|
||||||
|
#as this code is public, i'm not putting 2022's API key in here. just add it as a var in your script and go
|
||||||
|
#requests a list of events that a team went to
|
||||||
|
def req_team_events(team,year,apikey):
|
||||||
|
headers={'X-TBA-Auth-Key':apikey}
|
||||||
|
r=requests.get('https://www.thebluealliance.com/api/v3/team/frc'+str(team)+'/events/'+str(year),headers=headers)
|
||||||
|
return r
|
||||||
|
|
||||||
|
#gets every match that a team played in
|
||||||
|
def req_team_matches(team,year,apikey):
|
||||||
|
headers={'X-TBA-Auth-Key':apikey}
|
||||||
|
r=requests.get('https://www.thebluealliance.com/api/v3/team/frc'+str(team)+'/matches/'+str(year), headers=headers)
|
||||||
|
return r
|
||||||
|
|
||||||
|
#gets all events in a certain year
|
||||||
|
def req_all_events(year, apikey):
|
||||||
|
headers={'X-TBA-Auth-Key':apikey}
|
||||||
|
r=requests.get('https://www.thebluealliance.com/api/v3/events/'+str(year), headers=headers)
|
||||||
|
return r
|
||||||
|
|
||||||
|
#gets all matches for an event
|
||||||
|
def req_event_matches(event_key,apikey):
|
||||||
|
headers={'X-TBA-Auth-Key':apikey}
|
||||||
|
r=requests.get('https://www.thebluealliance.com/api/v3/event/'+str(event_key)+'/matches', headers=headers)
|
||||||
|
return r
|
||||||
|
|
||||||
|
#gets elimination alliances from a event
|
||||||
|
def req_event_elim_alli(event_key, apikey):
|
||||||
|
headers={'X-TBA-Auth-Key':apikey}
|
||||||
|
r=requests.get('https://www.thebluealliance.com/api/v3/event/'+str(event_key)+'/alliances', headers=headers)
|
||||||
|
return r
|
||||||
|
|
||||||
|
#gets TBA's insights from an event
|
||||||
|
def req_event_insights(event_key, apikey):
|
||||||
|
headers={'X-TBA-Auth-Key':apikey}
|
||||||
|
r=requests.get('https://www.thebluealliance.com/api/v3/event/'+str(event_key)+'/insights', headers=headers)
|
||||||
|
return r
|
||||||
|
|
||||||
|
#processes the json return. right now, it's slow and not great. will throw an exception if it doesn't get a good status code
|
||||||
|
def process_json_ret(req):
|
||||||
|
if req.status_code == 200:
|
||||||
|
keys=[]
|
||||||
|
for i in req.json():
|
||||||
|
for j in i.keys():
|
||||||
|
read=False
|
||||||
|
for k in keys:
|
||||||
|
if k==j:
|
||||||
|
read=True
|
||||||
|
break
|
||||||
|
if not read:
|
||||||
|
keys.append(j)
|
||||||
|
out=[]
|
||||||
|
out.append(keys)
|
||||||
|
for i in req.json():
|
||||||
|
buf=[]
|
||||||
|
for j in keys:
|
||||||
|
try:
|
||||||
|
buf.append(i[j])
|
||||||
|
except:
|
||||||
|
buf.append("")
|
||||||
|
out.append(buf)
|
||||||
|
return out
|
||||||
|
else:
|
||||||
|
raise ValueError('Status code is: '+req.status_code+', not 200')
|
@ -1,131 +1,129 @@
|
|||||||
#Titan Robotics Team 2022: Visualization Module
|
#Titan Robotics Team 2022: Visualization Module
|
||||||
#Written by Arthur Lu & Jacob Levine
|
#Written by Arthur Lu & Jacob Levine
|
||||||
#Notes:
|
#Notes:
|
||||||
# this should be imported as a python module using 'import visualization'
|
# this should be imported as a python module using 'import visualization'
|
||||||
# this should be included in the local directory or environment variable
|
# this should be included in the local directory or environment variable
|
||||||
# this module has not been optimized for multhreaded computing
|
# this module has not been optimized for multhreaded computing
|
||||||
#Number of easter eggs: Jake is Jewish and does not observe easter.
|
#Number of easter eggs: Jake is Jewish and does not observe easter.
|
||||||
#setup:
|
#setup:
|
||||||
|
|
||||||
__version__ = "1.0.0.001"
|
__version__ = "1.0.0.001"
|
||||||
|
|
||||||
#changelog should be viewed using print(analysis.__changelog__)
|
#changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
1.0.0.xxx:
|
1.0.0.xxx:
|
||||||
-added basic plotting, clustering, and regression comparisons"""
|
-added basic plotting, clustering, and regression comparisons"""
|
||||||
__author__ = (
|
__author__ = (
|
||||||
"Arthur Lu <arthurlu@ttic.edu>, "
|
"Arthur Lu <arthurlu@ttic.edu>, "
|
||||||
"Jacob Levine <jlevine@ttic.edu>,"
|
"Jacob Levine <jlevine@ttic.edu>,"
|
||||||
)
|
)
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'affinity_prop',
|
'affinity_prop',
|
||||||
'bar_graph',
|
'bar_graph',
|
||||||
'dbscan',
|
'dbscan',
|
||||||
'kmeans',
|
'kmeans',
|
||||||
'line_plot',
|
'line_plot',
|
||||||
'pca_comp',
|
'pca_comp',
|
||||||
'regression_comp',
|
'regression_comp',
|
||||||
'scatter_plot',
|
'scatter_plot',
|
||||||
'spectral',
|
'spectral',
|
||||||
'vis_2d'
|
'vis_2d'
|
||||||
]
|
]
|
||||||
#imports
|
#imports
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from sklearn.decomposition import PCA, KernelPCA, IncrementalPCA
|
from sklearn.decomposition import PCA, KernelPCA, IncrementalPCA
|
||||||
from sklearn.preprocessing import StandardScaler
|
from sklearn.preprocessing import StandardScaler
|
||||||
from sklearn.cluster import AffinityPropagation, DBSCAN, KMeans, SpectralClustering
|
from sklearn.cluster import AffinityPropagation, DBSCAN, KMeans, SpectralClustering
|
||||||
import statistics
|
|
||||||
|
#bar of x,y
|
||||||
#bar of x,y
|
def bar_graph(x,y):
|
||||||
def bar_graph(x,y):
|
x=np.asarray(x)
|
||||||
x=np.asarray(x)
|
y=np.asarray(y)
|
||||||
y=np.asarray(y)
|
plt.bar(x,y)
|
||||||
plt.bar(x,y)
|
plt.show()
|
||||||
plt.show()
|
|
||||||
|
#scatter of x,y
|
||||||
#scatter of x,y
|
def scatter_plot(x,y):
|
||||||
def scatter_plot(x,y):
|
x=np.asarray(x)
|
||||||
x=np.asarray(x)
|
y=np.asarray(y)
|
||||||
y=np.asarray(y)
|
plt.scatter(x,y)
|
||||||
plt.scatter(x,y)
|
plt.show()
|
||||||
plt.show()
|
|
||||||
|
#line of x,y
|
||||||
#line of x,y
|
def line_plot(x,y):
|
||||||
def line_plot(x,y):
|
x=np.asarray(x)
|
||||||
x=np.asarray(x)
|
y=np.asarray(y)
|
||||||
y=np.asarray(y)
|
plt.scatter(x,y)
|
||||||
plt.scatter(x,y)
|
plt.show()
|
||||||
plt.show()
|
|
||||||
|
#plot data + regression fit
|
||||||
#plot data + regression fit
|
def regression_comp(x,y,reg):
|
||||||
def regression_comp(x,y,reg):
|
x=np.asarray(x)
|
||||||
x=np.asarray(x)
|
y=np.asarray(y)
|
||||||
y=np.asarray(y)
|
regx=np.arange(x.min(),x.max(),(x.max()-x.min())/1000))
|
||||||
regx=np.arange(x.min(),x.max(),(x.max()-x.min())/1000))
|
regy=[]
|
||||||
regy=[]
|
for i in regx:
|
||||||
for i in regx:
|
regy.append(eval(reg[0].replace("z",str(i))))
|
||||||
regy.append(eval(reg[0].replace("z",str(i))))
|
regy=np.asarray(regy)
|
||||||
regy=np.asarray(regy)
|
plt.scatter(x,y)
|
||||||
plt.scatter(x,y)
|
plt.plot(regx,regy,color="orange",linewidth=3)
|
||||||
plt.plot(regx,regy,color="orange",linewidth=3)
|
plt.text(.85*max([x.max(),regx.max()]),.95*max([y.max(),regy.max()]),
|
||||||
plt.text(.85*max([x.max(),regx.max()]),.95*max([y.max(),regy.max()]),
|
u"R\u00b2="+str(round(reg[2],5)),
|
||||||
u"R\u00b2="+str(round(reg[2],5)),
|
horizontalalignment='center', verticalalignment='center')
|
||||||
horizontalalignment='center', verticalalignment='center')
|
plt.text(.85*max([x.max(),regx.max()]),.85*max([y.max(),regy.max()]),
|
||||||
plt.text(.85*max([x.max(),regx.max()]),.85*max([y.max(),regy.max()]),
|
"MSE="+str(round(reg[1],5)),
|
||||||
"MSE="+str(round(reg[1],5)),
|
horizontalalignment='center', verticalalignment='center')
|
||||||
horizontalalignment='center', verticalalignment='center')
|
plt.show()
|
||||||
plt.show()
|
|
||||||
|
#PCA to compress down to 2d
|
||||||
#PCA to compress down to 2d
|
def pca_comp(big_multidim):
|
||||||
def pca_comp(big_multidim):
|
pca=PCA(n_components=2)
|
||||||
pca=PCA(n_components=2)
|
td_norm=StandardScaler().fit_transform(big_multidim)
|
||||||
td_norm=StandardScaler().fit_transform(big_multidim)
|
td_pca=pca.fit_transform(td_norm)
|
||||||
td_pca=pca.fit_transform(td_norm)
|
return td_pca
|
||||||
return td_pca
|
|
||||||
|
#one-stop visualization of multidim datasets
|
||||||
#one-stop visualization of multidim datasets
|
def vis_2d(big_multidim):
|
||||||
def vis_2d(big_multidim):
|
td_pca=pca_comp(big_multidim)
|
||||||
td_pca=pca_comp(big_multidim)
|
plt.scatter(td_pca[:,0], td_pca[:,1])
|
||||||
plt.scatter(td_pca[:,0], td_pca[:,1])
|
|
||||||
|
def cluster_vis(data, cluster_assign):
|
||||||
def cluster_vis(data, cluster_assign):
|
pca=PCA(n_components=2)
|
||||||
pca=PCA(n_components=2)
|
td_norm=StandardScaler().fit_transform(data)
|
||||||
td_norm=StandardScaler().fit_transform(data)
|
td_pca=pca.fit_transform(td_norm)
|
||||||
td_pca=pca.fit_transform(td_norm)
|
colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',
|
||||||
colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',
|
'#f781bf', '#a65628', '#984ea3',
|
||||||
'#f781bf', '#a65628', '#984ea3',
|
'#999999', '#e41a1c', '#dede00']),
|
||||||
'#999999', '#e41a1c', '#dede00']),
|
int(max(clu) + 1))))
|
||||||
int(max(clu) + 1))))
|
colors = np.append(colors, ["#000000"])
|
||||||
colors = np.append(colors, ["#000000"])
|
plt.figure(figsize=(8, 8))
|
||||||
plt.figure(figsize=(8, 8))
|
plt.scatter(td_norm[:, 0], td_norm[:, 1], s=10, color=colors[cluster_assign])
|
||||||
plt.scatter(td_norm[:, 0], td_norm[:, 1], s=10, color=colors[cluster_assign])
|
plt.show()
|
||||||
plt.show()
|
|
||||||
|
#affinity prop- slow, but ok if you don't have any idea how many you want
|
||||||
#affinity prop- slow, but ok if you don't have any idea how many you want
|
def affinity_prop(data, damping=.77, preference=-70):
|
||||||
def affinity_prop(data, damping=.77, preference=-70):
|
td_norm=StandardScaler().fit_transform(data)
|
||||||
td_norm=StandardScaler().fit_transform(data)
|
db = AffinityPropagation(damping=damping,preference=preference).fit(td)
|
||||||
db = AffinityPropagation(damping=damping,preference=preference).fit(td)
|
y=db.predict(td_norm)
|
||||||
y=db.predict(td_norm)
|
return y
|
||||||
return y
|
|
||||||
|
#DBSCAN- slightly faster but can label your dataset as all outliers
|
||||||
#DBSCAN- slightly faster but can label your dataset as all outliers
|
def dbscan(data, eps=.3):
|
||||||
def dbscan(data, eps=.3):
|
td_norm=StandardScaler().fit_transform(data)
|
||||||
td_norm=StandardScaler().fit_transform(data)
|
db = DBSCAN(eps=eps).fit(td)
|
||||||
db = DBSCAN(eps=eps).fit(td)
|
y=db.labels_.astype(np.int)
|
||||||
y=db.labels_.astype(np.int)
|
return y
|
||||||
return y
|
|
||||||
|
#K-means clustering- the classic
|
||||||
#K-means clustering- the classic
|
def kmeans(data, num_clusters):
|
||||||
def kmeans(data, num_clusters):
|
td_norm=StandardScaler().fit_transform(data)
|
||||||
td_norm=StandardScaler().fit_transform(data)
|
db = KMeans(n_clusters=num_clusters).fit(td)
|
||||||
db = KMeans(n_clusters=num_clusters).fit(td)
|
y=db.labels_.astype(np.int)
|
||||||
y=db.labels_.astype(np.int)
|
return y
|
||||||
return y
|
|
||||||
|
#Spectral Clustering- Seems to work really well
|
||||||
#Spectral Clustering- Seems to work really well
|
def spectral(data, num_clusters):
|
||||||
def spectral(data, num_clusters):
|
td_norm=StandardScaler().fit_transform(data)
|
||||||
td_norm=StandardScaler().fit_transform(data)
|
db = SpectralClustering(n_clusters=num_clusters).fit(td)
|
||||||
db = SpectralClustering(n_clusters=num_clusters, eigen_solver='arpack',
|
y=db.labels_.astype(np.int)
|
||||||
affinity="nearest_neighbors").fit(td)
|
return y
|
||||||
y=db.labels_.astype(np.int)
|
|
||||||
return y
|
|
||||||
|
Loading…
Reference in New Issue
Block a user