mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 17:49:09 +00:00
analysis.py v 1.1.9.002
This commit is contained in:
parent
93f87dbdc1
commit
fa6e42e2ee
@ -7,10 +7,12 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.9.001"
|
__version__ = "1.1.9.002"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.9.002:
|
||||||
|
- kernelized PCA and KNN
|
||||||
1.1.9.001:
|
1.1.9.001:
|
||||||
- fixed bugs with SVM and NaiveBayes
|
- fixed bugs with SVM and NaiveBayes
|
||||||
1.1.9.000:
|
1.1.9.000:
|
||||||
@ -397,17 +399,18 @@ def variance(data):
|
|||||||
|
|
||||||
return np.var(data)
|
return np.var(data)
|
||||||
|
|
||||||
def kmeans(data, kernel=sklearn.cluster.KMeans()):
|
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||||
|
|
||||||
|
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
||||||
kernel.fit(data)
|
kernel.fit(data)
|
||||||
predictions = kernel.predict(data)
|
predictions = kernel.predict(data)
|
||||||
centers = kernel.cluster_centers_
|
centers = kernel.cluster_centers_
|
||||||
|
|
||||||
return centers, predictions
|
return centers, predictions
|
||||||
|
|
||||||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = ’auto’, tol = 0.0, iterated_power = ’auto’, random_state = None):
|
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
||||||
|
|
||||||
kernel = sklearn.decomposition.PCA()
|
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
||||||
|
|
||||||
return kernel.fit_transform(data)
|
return kernel.fit_transform(data)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user