analysis.py v 1.1.8.000

This commit is contained in:
art 2019-11-05 13:38:49 -06:00
parent 5ecd01279f
commit e43de9aac1

View File

@ -7,10 +7,13 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.7.000" __version__ = "1.1.8.000"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.8.000:
- added NaiveBayes classification engine
- note: untested
1.1.7.000: 1.1.7.000:
- added knn() - added knn()
- added confusion matrix to decisiontree() - added confusion matrix to decisiontree()
@ -405,9 +408,9 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
model = model.fit(data_train,labels_train) model = model.fit(data_train,labels_train)
predictions = model.predict(data_test) predictions = model.predict(data_test)
cm = sklearn.metrics.confusion_matrix(labels_test, predictions) cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
accuracy = sklearn.metrics.accuracy_score(labels_test, predictions) cr = sklearn.metrics.classification_report(labels_test, predictions)
return model, cm, accuracy return model, cm, cr
def knn(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling def knn(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
@ -420,6 +423,52 @@ def knn(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='m
return model, cm, cr return model, cm, cr
class NaiveBayes:
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
cr = sklearn.metrics.classification_report(labels_test, predictions)
return model, cm, cr
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
cr = sklearn.metrics.classification_report(labels_test, predictions)
return model, cm, cr
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
cr = sklearn.metrics.classification_report(labels_test, predictions)
return model, cm, cr
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.ComplementNB(aplha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
cr = sklearn.metrics.classification_report(labels_test, predictions)
return model, cm, cr
class Regression: class Regression:
# Titan Robotics Team 2022: CUDA-based Regressions Module # Titan Robotics Team 2022: CUDA-based Regressions Module