superscript.py v 0.0.2.001

This commit is contained in:
ltcptgeneral 2020-03-04 23:59:50 -06:00
parent db99028661
commit df7cce80d6
4 changed files with 48 additions and 14 deletions

View File

@ -1,6 +1,6 @@
2020ilch 2020ilch
balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-blocked,basic_stats,historical_analysis
balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-collected,basic_stats,historical_analysis
balls-lower,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-lower,basic_stats,historical_analysis
balls-started,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-started,basic_stats,historical_analysis
balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-upper,basic_stats,historical_analysis
1 2020ilch
2 balls-blocked,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-blocked,basic_stats,historical_analysis
3 balls-collected,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-collected,basic_stats,historical_analysis
4 balls-lower,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-lower,basic_stats,historical_analysis
5 balls-started,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-started,basic_stats,historical_analysis
6 balls-upper,basic_stats,historical_analysis,regression_linear,regression_logarithmic,regression_exponential,regression_polynomial,regression_sigmoidal balls-upper,basic_stats,historical_analysis

View File

@ -62,3 +62,15 @@ def push_team_metrics_data(apikey, competition, team_num, data, dbname = "data_p
db = client[dbname] db = client[dbname]
mdata = db[colname] mdata = db[colname]
mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "metrics" : data}, True) mdata.replace_one({"competition" : competition, "team": team_num}, {"_id": competition+str(team_num)+"am", "competition" : competition, "team" : team_num, "metrics" : data}, True)
def get_analysis_flags(apikey, flag):
client = pymongo.MongoClient(apikey)
db = client.data_processing
mdata = db.flags
return mdata.find_one({flag:{"$exists":True}})
def set_analysis_flags(apikey, flag, data):
client = pymongo.MongoClient(apikey)
db = client.data_processing
mdata = db.flags
return mdata.replace_one({flag:{"$exists":True}}, data, True)

View File

@ -3,10 +3,16 @@
# Notes: # Notes:
# setup: # setup:
__version__ = "0.0.1.004" __version__ = "0.0.2.001"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
0.0.2.001:
- minor stability patches
- implemented db syncing for timestamps
- fixed bugs
0.0.2.000:
- finalized testing and small fixes
0.0.1.004: 0.0.1.004:
- finished metrics implement, trueskill is bugged - finished metrics implement, trueskill is bugged
0.0.1.003: 0.0.1.003:
@ -67,6 +73,7 @@ import time
def main(): def main():
while(True): while(True):
current_time = time.time() current_time = time.time()
print("time: " + str(current_time)) print("time: " + str(current_time))
@ -79,6 +86,19 @@ def main():
tbakey = an.load_csv("keys.txt")[1][0] tbakey = an.load_csv("keys.txt")[1][0]
print(" loaded keys") print(" loaded keys")
previous_time = d.get_analysis_flags(apikey, "latest_update")
if(previous_time == None):
d.set_analysis_flags(apikey, "latest_update", 0)
previous_time = 0
else:
previous_time = previous_time["latest_update"]
print(" analysis backtimed to: " + str(previous_time))
print(" loading data") print(" loading data")
data = d.get_data_formatted(apikey, competition) data = d.get_data_formatted(apikey, competition)
print(" loaded data") print(" loaded data")
@ -88,9 +108,11 @@ def main():
print(" finished tests") print(" finished tests")
print(" running metrics") print(" running metrics")
metrics = metricsloop(tbakey, apikey, competition, 0) metrics = metricsloop(tbakey, apikey, competition, previous_time)
print(" finished metrics") print(" finished metrics")
d.set_analysis_flags(apikey, "latest_update", {"latest_update":current_time})
print(" pushing to database") print(" pushing to database")
push_to_database(apikey, competition, results, metrics) push_to_database(apikey, competition, results, metrics)
print(" pushed to database") print(" pushed to database")
@ -127,22 +149,22 @@ def simplestats(data, test):
return an.basic_stats(data) return an.basic_stats(data)
if(test == "historical_analysis"): if(test == "historical_analysis"):
return an.histo_analysis(data) return an.histo_analysis([list(range(len(data))), data])
if(test == "regression_linear"): if(test == "regression_linear"):
return an.regression('cpu', list(range(len(data))), data, ['lin']) return an.regression('cpu', [list(range(len(data)))], [data], ['lin'], _iterations = 5000)
if(test == "regression_logarithmic"): if(test == "regression_logarithmic"):
return an.regression('cpu', list(range(len(data))), data, ['log']) return an.regression('cpu', [list(range(len(data)))], [data], ['log'], _iterations = 5000)
if(test == "regression_exponential"): if(test == "regression_exponential"):
return an.regression('cpu', list(range(len(data))), data, ['exp']) return an.regression('cpu', [list(range(len(data)))], [data], ['exp'], _iterations = 5000)
if(test == "regression_polynomial"): if(test == "regression_polynomial"):
return an.regression('cpu', list(range(len(data))), data, ['ply']) return an.regression('cpu', [list(range(len(data)))], [data], ['ply'], _iterations = 5000)
if(test == "regression_sigmoidal"): if(test == "regression_sigmoidal"):
return an.regression('cpu', list(range(len(data))), data, ['sig']) return an.regression('cpu', [list(range(len(data)))], [data], ['sig'], _iterations = 5000)
def push_to_database(apikey, competition, results, metrics): def push_to_database(apikey, competition, results, metrics):