fixed/optimized imports,

fixed headers

Signed-off-by: Arthur Lu <learthurgo@gmail.com>
This commit is contained in:
Arthur Lu 2021-11-09 22:52:04 +00:00
parent d57745547f
commit dad195a00f
11 changed files with 37 additions and 40 deletions

View File

@ -7,10 +7,13 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "3.0.4" __version__ = "3.0.5"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
3.0.5:
- removed extra submodule imports
- fixed/optimized header
3.0.4: 3.0.4:
- removed -_obj imports - removed -_obj imports
3.0.3: 3.0.3:
@ -361,7 +364,6 @@ __all__ = [
'histo_analysis', 'histo_analysis',
'regression', 'regression',
'Metric', 'Metric',
'kmeans',
'pca', 'pca',
'decisiontree', 'decisiontree',
# all statistics functions left out due to integration in other functions # all statistics functions left out due to integration in other functions
@ -374,21 +376,14 @@ __all__ = [
import csv import csv
from tra_analysis.metrics import elo as Elo from tra_analysis.metrics import elo as Elo
from tra_analysis.metrics import glicko2 as Glicko2 from tra_analysis.metrics import glicko2 as Glicko2
import math
import numpy as np import numpy as np
import scipy import scipy
from scipy import optimize, stats import sklearn, sklearn.cluster
import sklearn
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
from tra_analysis.metrics import trueskill as Trueskill from tra_analysis.metrics import trueskill as Trueskill
import warnings
# import submodules # import submodules
from .Array import Array
from .ClassificationMetric import ClassificationMetric from .ClassificationMetric import ClassificationMetric
from .RegressionMetric import RegressionMetric
from . import SVM
class error(ValueError): class error(ValueError):
pass pass
@ -599,16 +594,7 @@ def npmin(data):
def npmax(data): def npmax(data):
return np.amax(data) return np.amax(data)
""" need to decide what to do with this function
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
kernel.fit(data)
predictions = kernel.predict(data)
centers = kernel.cluster_centers_
return centers, predictions
"""
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None): def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state) kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import ClassificationMetric' # this should be imported as a python module using 'from tra_analysis import ClassificationMetric'
# setup: # setup:
__version__ = "1.0.1" __version__ = "1.0.2"
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.2:
- optimized imports
1.0.1: 1.0.1:
- fixed __all__ - fixed __all__
1.0.0: 1.0.0:
@ -22,7 +24,6 @@ __all__ = [
] ]
import sklearn import sklearn
from sklearn import metrics
class ClassificationMetric(): class ClassificationMetric():

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import CorrelationTest' # this should be imported as a python module using 'from tra_analysis import CorrelationTest'
# setup: # setup:
__version__ = "1.0.1" __version__ = "1.0.2"
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.2:
- optimized imports
1.0.1: 1.0.1:
- fixed __all__ - fixed __all__
1.0.0: 1.0.0:
@ -29,7 +31,6 @@ __all__ = [
] ]
import scipy import scipy
from scipy import stats
def anova_oneway(*args): #expects arrays of samples def anova_oneway(*args): #expects arrays of samples

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import KNN' # this should be imported as a python module using 'from tra_analysis import KNN'
# setup: # setup:
__version__ = "1.0.0" __version__ = "1.0.1"
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.1:
- optimized imports
1.0.0: 1.0.0:
- ported analysis.KNN() here - ported analysis.KNN() here
- removed classness - removed classness
@ -23,7 +25,6 @@ __all__ = [
] ]
import sklearn import sklearn
from sklearn import model_selection, neighbors
from . import ClassificationMetric, RegressionMetric from . import ClassificationMetric, RegressionMetric
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import NaiveBayes' # this should be imported as a python module using 'from tra_analysis import NaiveBayes'
# setup: # setup:
__version__ = "1.0.0" __version__ = "1.0.1"
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.1:
- optimized imports
1.0.0: 1.0.0:
- ported analysis.NaiveBayes() here - ported analysis.NaiveBayes() here
- removed classness - removed classness
@ -24,8 +26,7 @@ __all__ = [
] ]
import sklearn import sklearn
from sklearn import model_selection, naive_bayes from . import ClassificationMetric
from . import ClassificationMetric, RegressionMetric
def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09): def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import RandomForest' # this should be imported as a python module using 'from tra_analysis import RandomForest'
# setup: # setup:
__version__ = "1.0.1" __version__ = "1.0.2"
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.2:
- optimized imports
1.0.1: 1.0.1:
- fixed __all__ - fixed __all__
1.0.0: 1.0.0:
@ -23,8 +25,7 @@ __all__ = [
"random_forest_regressor", "random_forest_regressor",
] ]
import sklearn import sklearn, sklearn.ensemble, sklearn.naive_bayes
from sklearn import ensemble, model_selection
from . import ClassificationMetric, RegressionMetric from . import ClassificationMetric, RegressionMetric
def random_forest_classifier(data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None): def random_forest_classifier(data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import RegressionMetric' # this should be imported as a python module using 'from tra_analysis import RegressionMetric'
# setup: # setup:
__version__ = "1.0.0" __version__ = "1.0.1"
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.1:
- optimized imports
1.0.0: 1.0.0:
- ported analysis.RegressionMetric() here - ported analysis.RegressionMetric() here
""" """
@ -21,7 +23,6 @@ __all__ = [
import numpy as np import numpy as np
import sklearn import sklearn
from sklearn import metrics
class RegressionMetric(): class RegressionMetric():

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import SVM' # this should be imported as a python module using 'from tra_analysis import SVM'
# setup: # setup:
__version__ = "1.0.2" __version__ = "1.0.3"
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.3:
- optimized imports
1.0.2: 1.0.2:
- fixed __all__ - fixed __all__
1.0.1: 1.0.1:
@ -30,7 +32,6 @@ __all__ = [
] ]
import sklearn import sklearn
from sklearn import svm
from . import ClassificationMetric, RegressionMetric from . import ClassificationMetric, RegressionMetric
class CustomKernel: class CustomKernel:

View File

@ -16,7 +16,7 @@ __changelog__ = """changelog:
__author__ = ( __author__ = (
"Arthur Lu <learthurgo@gmail.com>", "Arthur Lu <learthurgo@gmail.com>",
"James Pan <zpan@imsa.edu>" "James Pan <zpan@imsa.edu>",
) )
__all__ = [ __all__ = [

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import StatisticalTest' # this should be imported as a python module using 'from tra_analysis import StatisticalTest'
# setup: # setup:
__version__ = "1.0.2" __version__ = "1.0.3"
__changelog__ = """changelog: __changelog__ = """changelog:
1.0.3:
- optimized imports
1.0.2: 1.0.2:
- added tukey_multicomparison - added tukey_multicomparison
- fixed styling - fixed styling
@ -61,7 +63,6 @@ __all__ = [
import numpy as np import numpy as np
import scipy import scipy
from scipy import stats, interpolate
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'): def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
@ -279,9 +280,9 @@ def get_tukeyQcrit(k, df, alpha=0.05):
cv001 = c[:, 2::2] cv001 = c[:, 2::2]
if alpha == 0.05: if alpha == 0.05:
intp = interpolate.interp1d(crows, cv005[:,k-2]) intp = scipy.interpolate.interp1d(crows, cv005[:,k-2])
elif alpha == 0.01: elif alpha == 0.01:
intp = interpolate.interp1d(crows, cv001[:,k-2]) intp = scipy.interpolate.interp1d(crows, cv001[:,k-2])
else: else:
raise ValueError('only implemented for alpha equal to 0.01 and 0.05') raise ValueError('only implemented for alpha equal to 0.01 and 0.05')
return intp(df) return intp(df)

View File

@ -16,6 +16,8 @@ __changelog__ = """changelog:
- deprecated titanlearn.py - deprecated titanlearn.py
- deprecated visualization.py - deprecated visualization.py
- removed matplotlib from requirements - removed matplotlib from requirements
- removed extra submodule imports in Analysis
- added typehinting, docstrings for each function
3.0.0: 3.0.0:
- incremented version to release 3.0.0 - incremented version to release 3.0.0
3.0.0-rc2: 3.0.0-rc2:
@ -45,6 +47,7 @@ __all__ = [
"Analysis", "Analysis",
"Array", "Array",
"ClassificationMetric", "ClassificationMetric",
"Clustering",
"CorrelationTest", "CorrelationTest",
"Expression", "Expression",
"Fit", "Fit",