mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
Implement fitting to circle using LSC and HyperFit (#45)
* chore: add pylint to devcontainer Signed-off-by: Dev Singh <dev@devksingh.com> * feat: init LSC fitting cuda and cpu-based LSC fitting using cupy and numpy Signed-off-by: Dev Singh <dev@devksingh.com> * docs: add changelog entry and module to class list Signed-off-by: Dev Singh <dev@devksingh.com> * docs: fix typo in comment Signed-off-by: Dev Singh <dev@devksingh.com> * fix: only import cupy if cuda available Signed-off-by: Dev Singh <dev@devksingh.com> * fix: move to own file, abandon cupy Signed-off-by: Dev Singh <dev@devksingh.com> * fix: remove numba dep Signed-off-by: Dev Singh <dev@devksingh.com> * deps: remove cupy dep Signed-off-by: Dev Singh <dev@devksingh.com> * feat: add tests Signed-off-by: Dev Singh <dev@devksingh.com> * fix: correct indentation Signed-off-by: Dev Singh <dev@devksingh.com> * fix: variable names Signed-off-by: Dev Singh <dev@devksingh.com> * fix: add self when refering to coords Signed-off-by: Dev Singh <dev@devksingh.com> * fix: numpy ordering Signed-off-by: Dev Singh <dev@devksingh.com> * docs: remove version bump, nomaintain add notice that module is not actively maintained, may be removed in future release Signed-off-by: Dev Singh <dev@devksingh.com> * fix: remove hyperfit as not being impled Signed-off-by: Dev Singh <dev@devksingh.com>
This commit is contained in:
parent
d15aa045de
commit
c48c512cf6
@ -24,5 +24,5 @@
|
|||||||
"ms-python.python",
|
"ms-python.python",
|
||||||
"waderyan.gitblame"
|
"waderyan.gitblame"
|
||||||
],
|
],
|
||||||
"postCreateCommand": "apt install vim -y ; pip install -r data-analysis/requirements.txt ; pip install -r analysis-master/requirements.txt ; pip install tra-analysis"
|
"postCreateCommand": "apt install vim -y ; pip install -r data-analysis/requirements.txt ; pip install -r analysis-master/requirements.txt ; pip install pylint ; pip install tra-analysis"
|
||||||
}
|
}
|
@ -1,8 +1,11 @@
|
|||||||
from tra_analysis import analysis as an
|
from tra_analysis import analysis as an
|
||||||
from tra_analysis import metrics
|
from tra_analysis import metrics
|
||||||
|
from tra_analysis import fits
|
||||||
|
|
||||||
def test_():
|
def test_():
|
||||||
test_data_linear = [1, 3, 6, 7, 9]
|
test_data_linear = [1, 3, 6, 7, 9]
|
||||||
|
x_data_circular = []
|
||||||
|
y_data_circular = []
|
||||||
y_data_ccu = [1, 3, 7, 14, 21]
|
y_data_ccu = [1, 3, 7, 14, 21]
|
||||||
y_data_ccd = [1, 5, 7, 8.5, 8.66]
|
y_data_ccd = [1, 5, 7, 8.5, 8.66]
|
||||||
test_data_scrambled = [-32, 34, 19, 72, -65, -11, -43, 6, 85, -17, -98, -26, 12, 20, 9, -92, -40, 98, -78, 17, -20, 49, 93, -27, -24, -66, 40, 84, 1, -64, -68, -25, -42, -46, -76, 43, -3, 30, -14, -34, -55, -13, 41, -30, 0, -61, 48, 23, 60, 87, 80, 77, 53, 73, 79, 24, -52, 82, 8, -44, 65, 47, -77, 94, 7, 37, -79, 36, -94, 91, 59, 10, 97, -38, -67, 83, 54, 31, -95, -63, 16, -45, 21, -12, 66, -48, -18, -96, -90, -21, -83, -74, 39, 64, 69, -97, 13, 55, 27, -39]
|
test_data_scrambled = [-32, 34, 19, 72, -65, -11, -43, 6, 85, -17, -98, -26, 12, 20, 9, -92, -40, 98, -78, 17, -20, 49, 93, -27, -24, -66, 40, 84, 1, -64, -68, -25, -42, -46, -76, 43, -3, 30, -14, -34, -55, -13, 41, -30, 0, -61, 48, 23, 60, 87, 80, 77, 53, 73, 79, 24, -52, 82, 8, -44, 65, 47, -77, 94, 7, 37, -79, 36, -94, 91, 59, 10, 97, -38, -67, 83, 54, 31, -95, -63, 16, -45, 21, -12, 66, -48, -18, -96, -90, -21, -83, -74, 39, 64, 69, -97, 13, 55, 27, -39]
|
||||||
@ -29,3 +32,4 @@ def test_():
|
|||||||
assert all(a == b for a, b in zip(an.Sort().bubblesort(test_data_scrambled), test_data_sorted))
|
assert all(a == b for a, b in zip(an.Sort().bubblesort(test_data_scrambled), test_data_sorted))
|
||||||
assert all(a == b for a, b in zip(an.Sort().cyclesort(test_data_scrambled), test_data_sorted))
|
assert all(a == b for a, b in zip(an.Sort().cyclesort(test_data_scrambled), test_data_sorted))
|
||||||
assert all(a == b for a, b in zip(an.Sort().cocktailsort(test_data_scrambled), test_data_sorted))
|
assert all(a == b for a, b in zip(an.Sort().cocktailsort(test_data_scrambled), test_data_sorted))
|
||||||
|
assert fits.CircleFit(x=[0,0,-1,1], y=[1, -1, 0, 0]).LSC() == (0.0, 0.0, 1.0, 0.0)
|
85
analysis-master/tra_analysis/fits.py
Normal file
85
analysis-master/tra_analysis/fits.py
Normal file
@ -0,0 +1,85 @@
|
|||||||
|
# Titan Robotics Team 2022: CPU fitting models
|
||||||
|
# Written by Dev Singh
|
||||||
|
# Notes:
|
||||||
|
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
||||||
|
# setup:
|
||||||
|
|
||||||
|
__version__ = "0.0.1"
|
||||||
|
|
||||||
|
# changelog should be viewed using print(analysis.fits.__changelog__)
|
||||||
|
__changelog__ = """changelog:
|
||||||
|
0.0.1:
|
||||||
|
- initial release, add circle fitting with LSC
|
||||||
|
"""
|
||||||
|
|
||||||
|
__author__ = (
|
||||||
|
"Dev Singh <dev@devksingh.com>"
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'CircleFit'
|
||||||
|
]
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class CircleFit:
|
||||||
|
"""Class to fit data to a circle using the Least Square Circle (LSC) method"""
|
||||||
|
# For more information on the LSC method, see:
|
||||||
|
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
|
||||||
|
def __init__(self, x, y, xy=None):
|
||||||
|
self.ournp = np #todo: implement cupy correctly
|
||||||
|
if type(x) == list:
|
||||||
|
x = np.array(x)
|
||||||
|
if type(y) == list:
|
||||||
|
y = np.array(y)
|
||||||
|
if type(xy) == list:
|
||||||
|
xy = np.array(xy)
|
||||||
|
if xy != None:
|
||||||
|
self.coords = xy
|
||||||
|
else:
|
||||||
|
# following block combines x and y into one array if not already done
|
||||||
|
self.coords = self.ournp.vstack(([x.T], [y.T])).T
|
||||||
|
def calc_R(x, y, xc, yc):
|
||||||
|
"""Returns distance between center and point"""
|
||||||
|
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
|
||||||
|
def f(c, x, y):
|
||||||
|
"""Returns distance between point and circle at c"""
|
||||||
|
Ri = calc_R(x, y, *c)
|
||||||
|
return Ri - Ri.mean()
|
||||||
|
def LSC(self):
|
||||||
|
"""Fits given data to a circle and returns the center, radius, and variance"""
|
||||||
|
x = self.coords[:, 0]
|
||||||
|
y = self.coords[:, 1]
|
||||||
|
# guessing at a center
|
||||||
|
x_m = self.ournp.mean(x)
|
||||||
|
y_m = self.ournp.mean(y)
|
||||||
|
|
||||||
|
# calculation of the reduced coordinates
|
||||||
|
u = x - x_m
|
||||||
|
v = y - y_m
|
||||||
|
|
||||||
|
# linear system defining the center (uc, vc) in reduced coordinates:
|
||||||
|
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
|
||||||
|
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
|
||||||
|
Suv = self.ournp.sum(u*v)
|
||||||
|
Suu = self.ournp.sum(u**2)
|
||||||
|
Svv = self.ournp.sum(v**2)
|
||||||
|
Suuv = self.ournp.sum(u**2 * v)
|
||||||
|
Suvv = self.ournp.sum(u * v**2)
|
||||||
|
Suuu = self.ournp.sum(u**3)
|
||||||
|
Svvv = self.ournp.sum(v**3)
|
||||||
|
|
||||||
|
# Solving the linear system
|
||||||
|
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
|
||||||
|
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
|
||||||
|
uc, vc = self.ournp.linalg.solve(A, B)
|
||||||
|
|
||||||
|
xc_1 = x_m + uc
|
||||||
|
yc_1 = y_m + vc
|
||||||
|
|
||||||
|
# Calculate the distances from center (xc_1, yc_1)
|
||||||
|
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
|
||||||
|
R_1 = self.ournp.mean(Ri_1)
|
||||||
|
# calculate residual error
|
||||||
|
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
|
||||||
|
return (xc_1, yc_1, R_1, residu_1)
|
@ -1,8 +1,9 @@
|
|||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
|
# Not actively maintained, may be removed in future release
|
||||||
# Written by Arthur Lu & Jacob Levine
|
# Written by Arthur Lu & Jacob Levine
|
||||||
# Notes:
|
# Notes:
|
||||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||||
# this module is cuda-optimized and vectorized (except for one small part)
|
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "0.0.4"
|
__version__ = "0.0.4"
|
||||||
@ -25,7 +26,7 @@ __changelog__ = """
|
|||||||
|
|
||||||
__author__ = (
|
__author__ = (
|
||||||
"Jacob Levine <jlevine@imsa.edu>",
|
"Jacob Levine <jlevine@imsa.edu>",
|
||||||
"Arthur Lu <learthurgo@gmail.com>"
|
"Arthur Lu <learthurgo@gmail.com>",
|
||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
@ -40,14 +41,15 @@ __all__ = [
|
|||||||
'ExpRegKernel',
|
'ExpRegKernel',
|
||||||
'SigmoidalRegKernelArthur',
|
'SigmoidalRegKernelArthur',
|
||||||
'SGDTrain',
|
'SGDTrain',
|
||||||
'CustomTrain'
|
'CustomTrain',
|
||||||
|
'CircleFit'
|
||||||
]
|
]
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
global device
|
global device
|
||||||
|
|
||||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
#todo: document completely
|
#todo: document completely
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user