analysis.py v 1.1.2.000, quick fixes

This commit is contained in:
ltcptgeneral 2019-09-30 16:02:32 -05:00
parent 7b73972383
commit bf1218fdfd
3 changed files with 232 additions and 7 deletions

View File

@ -3,14 +3,19 @@
# Notes: # Notes:
# this should be imported as a python module using 'import analysis' # this should be imported as a python module using 'import analysis'
# this should be included in the local directory or environment variable # this should be included in the local directory or environment variable
# this module has not been optimized for multhreaded computing # this module has been optimized for multhreaded computing
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.1.001" __version__ = "1.1.2.000"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.2.000:
- integrated regression.py as regression class
- removed regression import
- fixed metadata for regression class
- fixed metadata for analysis class
1.1.1.001: 1.1.1.001:
- regression_engine() bug fixes, now actaully regresses - regression_engine() bug fixes, now actaully regresses
1.1.1.000: 1.1.1.000:
@ -133,8 +138,8 @@ __changelog__ = """changelog:
""" """
__author__ = ( __author__ = (
"Arthur Lu <arthurlu@ttic.edu>", "Arthur Lu <learthurgo@gmail.com>",
"Jacob Levine <jlevine@ttic.edu>", "Jacob Levine <jlevine@imsa.edu>",
) )
__all__ = [ __all__ = [
@ -148,6 +153,7 @@ __all__ = [
'r_squared', 'r_squared',
'mse', 'mse',
'rms', 'rms',
'regression'
# all statistics functions left out due to integration in other functions # all statistics functions left out due to integration in other functions
] ]
@ -160,7 +166,6 @@ import numba
from numba import jit from numba import jit
import numpy as np import numpy as np
import math import math
from analysis import regression
from sklearn import metrics from sklearn import metrics
from sklearn import preprocessing from sklearn import preprocessing
import torch import torch
@ -322,4 +327,224 @@ def stdev(data):
@jit(nopython=True) @jit(nopython=True)
def variance(data): def variance(data):
return np.var(data) return np.var(data)
class regression:
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.002"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain'
]
# imports (just one for now):
import torch
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def factorial(n):
if n==0:
return 1
else:
return n*factorial(n-1)
def num_poly_terms(num_vars, power):
if power == 0:
return 0
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
def take_all_pwrs(vec,pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0])
for i in torch.t(combins):
out *= i
return torch.cat(out,take_all_pwrs(vec, pwr-1))
def set_device(new_device):
global device
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel

View File

@ -8,7 +8,7 @@
__version__ = "1.0.0.002" __version__ = "1.0.0.002"
# changelog should be viewed using print(cudaregress.__changelog__) # changelog should be viewed using print(regression.__changelog__)
__changelog__ = """ __changelog__ = """
1.0.0.002: 1.0.0.002:
-Added more parameters to log, exponential, polynomial -Added more parameters to log, exponential, polynomial