mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 09:39:10 +00:00
analysis-better.py v 1.0.9.000
changelog: - refactored - numpyed everything - removed stats in favor of numpy functions
This commit is contained in:
parent
e914d32b37
commit
b689dada3d
@ -14,6 +14,7 @@ __changelog__ = """changelog:
|
|||||||
1.0.9.000:
|
1.0.9.000:
|
||||||
- refactored
|
- refactored
|
||||||
- numpyed everything
|
- numpyed everything
|
||||||
|
- removed stats in favor of numpy functions
|
||||||
1.0.8.005:
|
1.0.8.005:
|
||||||
- minor fixes
|
- minor fixes
|
||||||
1.0.8.004:
|
1.0.8.004:
|
||||||
@ -160,7 +161,6 @@ import torch
|
|||||||
class error(ValueError):
|
class error(ValueError):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def _init_device(setting, arg): # initiates computation device for ANNs
|
def _init_device(setting, arg): # initiates computation device for ANNs
|
||||||
if setting == "cuda":
|
if setting == "cuda":
|
||||||
try:
|
try:
|
||||||
@ -177,11 +177,10 @@ def _init_device(setting, arg): # initiates computation device for ANNs
|
|||||||
|
|
||||||
def load_csv(filepath):
|
def load_csv(filepath):
|
||||||
with open(filepath, newline='') as csvfile:
|
with open(filepath, newline='') as csvfile:
|
||||||
file_array = list(csv.reader(csvfile))
|
file_array = np.array(list(csv.reader(csvfile)))
|
||||||
csvfile.close()
|
csvfile.close()
|
||||||
return file_array
|
return file_array
|
||||||
|
|
||||||
|
|
||||||
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||||
def basic_stats(data, method, arg):
|
def basic_stats(data, method, arg):
|
||||||
|
|
||||||
@ -190,10 +189,7 @@ def basic_stats(data, method, arg):
|
|||||||
|
|
||||||
if method == "1d" or method == 0:
|
if method == "1d" or method == 0:
|
||||||
|
|
||||||
data_t = []
|
data_t = np.array(data).astype(float)
|
||||||
|
|
||||||
for i in range(0, len(data), 1):
|
|
||||||
data_t.append(float(data[i]))
|
|
||||||
|
|
||||||
_mean = mean(data_t)
|
_mean = mean(data_t)
|
||||||
_median = median(data_t)
|
_median = median(data_t)
|
||||||
@ -211,7 +207,7 @@ def basic_stats(data, method, arg):
|
|||||||
_variance = None
|
_variance = None
|
||||||
|
|
||||||
return _mean, _median, _mode, _stdev, _variance
|
return _mean, _median, _mode, _stdev, _variance
|
||||||
|
"""
|
||||||
elif method == "column" or method == 1:
|
elif method == "column" or method == 1:
|
||||||
|
|
||||||
c_data = []
|
c_data = []
|
||||||
@ -239,7 +235,7 @@ def basic_stats(data, method, arg):
|
|||||||
_variance = None
|
_variance = None
|
||||||
|
|
||||||
return _mean, _median, _mode, _stdev, _variance
|
return _mean, _median, _mode, _stdev, _variance
|
||||||
|
|
||||||
elif method == "row" or method == 2:
|
elif method == "row" or method == 2:
|
||||||
|
|
||||||
r_data = []
|
r_data = []
|
||||||
@ -263,9 +259,10 @@ def basic_stats(data, method, arg):
|
|||||||
_variance = None
|
_variance = None
|
||||||
|
|
||||||
return _mean, _median, _mode, _stdev, _variance
|
return _mean, _median, _mode, _stdev, _variance
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise error("method error")
|
raise error("method error")
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
# returns z score with inputs of point, mean and standard deviation of spread
|
# returns z score with inputs of point, mean and standard deviation of spread
|
||||||
@ -277,8 +274,8 @@ def z_score(point, mean, stdev):
|
|||||||
# mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
|
# mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
|
||||||
def z_normalize(x, y, mode):
|
def z_normalize(x, y, mode):
|
||||||
|
|
||||||
x_norm = []
|
x_norm = np.array().astype(float)
|
||||||
y_norm = []
|
y_norm = np.array().astype(float)
|
||||||
|
|
||||||
mean = 0
|
mean = 0
|
||||||
stdev = 0
|
stdev = 0
|
||||||
@ -320,7 +317,7 @@ def z_normalize(x, y, mode):
|
|||||||
# returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
|
# returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
|
||||||
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
|
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
|
||||||
|
|
||||||
z_split = []
|
z_split = np.array().astype(float)
|
||||||
i = low_bound
|
i = low_bound
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
@ -715,6 +712,27 @@ def generate_data(filename, x, y, low, high):
|
|||||||
temp = temp + str(random.uniform(low, high))
|
temp = temp + str(random.uniform(low, high))
|
||||||
file.write(temp + "\n")
|
file.write(temp + "\n")
|
||||||
|
|
||||||
|
def mean(data):
|
||||||
|
|
||||||
|
return np.mean(data)
|
||||||
|
|
||||||
|
def median(data):
|
||||||
|
|
||||||
|
return np.median(data)
|
||||||
|
|
||||||
|
def mode(data):
|
||||||
|
|
||||||
|
return np.argmax(np.bincount(data))
|
||||||
|
|
||||||
|
def stdev(data):
|
||||||
|
|
||||||
|
return np.std(data)
|
||||||
|
|
||||||
|
def variance(data):
|
||||||
|
|
||||||
|
return np.var(data)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
class StatisticsError(ValueError):
|
class StatisticsError(ValueError):
|
||||||
pass
|
pass
|
||||||
@ -856,8 +874,6 @@ def _fail_neg(values, errmsg='negative value'):
|
|||||||
if x < 0:
|
if x < 0:
|
||||||
raise StatisticsError(errmsg)
|
raise StatisticsError(errmsg)
|
||||||
yield x
|
yield x
|
||||||
|
|
||||||
|
|
||||||
def mean(data):
|
def mean(data):
|
||||||
|
|
||||||
if iter(data) is data:
|
if iter(data) is data:
|
||||||
@ -927,3 +943,4 @@ def stdev(data, xbar=None):
|
|||||||
return var.sqrt()
|
return var.sqrt()
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
return math.sqrt(var)
|
return math.sqrt(var)
|
||||||
|
"""
|
Loading…
Reference in New Issue
Block a user