mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 17:49:09 +00:00
analysis.py v 1.1.11.005
This commit is contained in:
parent
0ba3a56ea7
commit
ae4ecbd67c
@ -7,10 +7,12 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.11.004"
|
__version__ = "1.1.11.005"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.11.005:
|
||||||
|
- added min and max for basic_stats
|
||||||
1.1.11.004:
|
1.1.11.004:
|
||||||
- bug fixes
|
- bug fixes
|
||||||
1.1.11.003:
|
1.1.11.003:
|
||||||
@ -270,8 +272,10 @@ def basic_stats(data):
|
|||||||
_median = median(data_t)
|
_median = median(data_t)
|
||||||
_stdev = stdev(data_t)
|
_stdev = stdev(data_t)
|
||||||
_variance = variance(data_t)
|
_variance = variance(data_t)
|
||||||
|
_min = npmin(data_t)
|
||||||
|
_max = npmax()
|
||||||
|
|
||||||
return _mean, _median, _stdev, _variance
|
return _mean, _median, _stdev, _variance, _min, _max
|
||||||
|
|
||||||
# returns z score with inputs of point, mean and standard deviation of spread
|
# returns z score with inputs of point, mean and standard deviation of spread
|
||||||
@jit(forceobj=True)
|
@jit(forceobj=True)
|
||||||
@ -432,6 +436,16 @@ def variance(data):
|
|||||||
|
|
||||||
return np.var(data)
|
return np.var(data)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def npmin(data):
|
||||||
|
|
||||||
|
return np.amin(data)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def npmax(data):
|
||||||
|
|
||||||
|
return np.amax(data)
|
||||||
|
|
||||||
@jit(forceobj=True)
|
@jit(forceobj=True)
|
||||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user