mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 17:49:09 +00:00
whatever
This commit is contained in:
parent
daecfcc4ee
commit
ac420ad9fa
@ -253,7 +253,6 @@ def _init_device(): # initiates computation device for ANNs
|
|||||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
||||||
return device
|
return device
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def load_csv(filepath):
|
def load_csv(filepath):
|
||||||
with open(filepath, newline='') as csvfile:
|
with open(filepath, newline='') as csvfile:
|
||||||
file_array = np.array(list(csv.reader(csvfile)))
|
file_array = np.array(list(csv.reader(csvfile)))
|
||||||
@ -270,8 +269,10 @@ def basic_stats(data):
|
|||||||
_median = median(data_t)
|
_median = median(data_t)
|
||||||
_stdev = stdev(data_t)
|
_stdev = stdev(data_t)
|
||||||
_variance = variance(data_t)
|
_variance = variance(data_t)
|
||||||
|
_min = min(data_t)
|
||||||
|
_max = max(data_t)
|
||||||
|
|
||||||
return _mean, _median, _stdev, _variance
|
return _mean, _median, _stdev, _variance, _min, _max
|
||||||
|
|
||||||
# returns z score with inputs of point, mean and standard deviation of spread
|
# returns z score with inputs of point, mean and standard deviation of spread
|
||||||
@jit(forceobj=True)
|
@jit(forceobj=True)
|
||||||
@ -432,6 +433,16 @@ def variance(data):
|
|||||||
|
|
||||||
return np.var(data)
|
return np.var(data)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def min(data):
|
||||||
|
|
||||||
|
return data.min
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def max(data):
|
||||||
|
|
||||||
|
return data.max
|
||||||
|
|
||||||
@jit(forceobj=True)
|
@jit(forceobj=True)
|
||||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user