From 9c15004925ef59345906ec519527526c45a80f6e Mon Sep 17 00:00:00 2001 From: Dev Singh Date: Sun, 23 Feb 2020 13:18:37 -0600 Subject: [PATCH 1/3] why are we unlicense? --- LICENSE | 24 ------------------------ 1 file changed, 24 deletions(-) delete mode 100644 LICENSE diff --git a/LICENSE b/LICENSE deleted file mode 100644 index cf1ab25d..00000000 --- a/LICENSE +++ /dev/null @@ -1,24 +0,0 @@ -This is free and unencumbered software released into the public domain. - -Anyone is free to copy, modify, publish, use, compile, sell, or -distribute this software, either in source code form or as a compiled -binary, for any purpose, commercial or non-commercial, and by any -means. - -In jurisdictions that recognize copyright laws, the author or authors -of this software dedicate any and all copyright interest in the -software to the public domain. We make this dedication for the benefit -of the public at large and to the detriment of our heirs and -successors. We intend this dedication to be an overt act of -relinquishment in perpetuity of all present and future rights to this -software under copyright law. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR -OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, -ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -OTHER DEALINGS IN THE SOFTWARE. - -For more information, please refer to From 4b9d5dae8f998f4b76ab6878ea43d08978b104c6 Mon Sep 17 00:00:00 2001 From: Dev Singh Date: Sun, 23 Feb 2020 13:19:40 -0600 Subject: [PATCH 2/3] Create LICENSE --- LICENSE | 674 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 674 insertions(+) create mode 100644 LICENSE diff --git a/LICENSE b/LICENSE new file mode 100644 index 00000000..f288702d --- /dev/null +++ b/LICENSE @@ -0,0 +1,674 @@ + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. From 2aef94fb7128c419ff31f59e61744027ed5fa4a9 Mon Sep 17 00:00:00 2001 From: art Date: Wed, 26 Feb 2020 08:58:27 -0600 Subject: [PATCH 3/3] a --- .../.ipynb_checkpoints/analysis-checkpoint.py | 952 ++++++++++++++++++ .../__pycache__/analysis.cpython-37.pyc | Bin 33645 -> 33778 bytes 2 files changed, 952 insertions(+) create mode 100644 data analysis/analysis/.ipynb_checkpoints/analysis-checkpoint.py diff --git a/data analysis/analysis/.ipynb_checkpoints/analysis-checkpoint.py b/data analysis/analysis/.ipynb_checkpoints/analysis-checkpoint.py new file mode 100644 index 00000000..40c12eac --- /dev/null +++ b/data analysis/analysis/.ipynb_checkpoints/analysis-checkpoint.py @@ -0,0 +1,952 @@ +# Titan Robotics Team 2022: Data Analysis Module +# Written by Arthur Lu & Jacob Levine +# Notes: +# this should be imported as a python module using 'import analysis' +# this should be included in the local directory or environment variable +# this module has been optimized for multhreaded computing +# current benchmark of optimization: 1.33 times faster +# setup: + +__version__ = "1.1.12.003" + +# changelog should be viewed using print(analysis.__changelog__) +__changelog__ = """changelog: + 1.1.12.003: + - removed depreciated code + 1.1.12.002: + - removed team first time trueskill instantiation in favor of integration in superscript.py + 1.1.12.001: + - improved readibility of regression outputs by stripping tensor data + - used map with lambda to acheive the improved readibility + - lost numba jit support with regression, and generated_jit hangs at execution + - TODO: reimplement correct numba integration in regression + 1.1.12.000: + - temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures + 1.1.11.010: + - alphabeticaly ordered import lists + 1.1.11.009: + - bug fixes + 1.1.11.008: + - bug fixes + 1.1.11.007: + - bug fixes + 1.1.11.006: + - tested min and max + - bug fixes + 1.1.11.005: + - added min and max in basic_stats + 1.1.11.004: + - bug fixes + 1.1.11.003: + - bug fixes + 1.1.11.002: + - consolidated metrics + - fixed __all__ + 1.1.11.001: + - added test/train split to RandomForestClassifier and RandomForestRegressor + 1.1.11.000: + - added RandomForestClassifier and RandomForestRegressor + - note: untested + 1.1.10.000: + - added numba.jit to remaining functions + 1.1.9.002: + - kernelized PCA and KNN + 1.1.9.001: + - fixed bugs with SVM and NaiveBayes + 1.1.9.000: + - added SVM class, subclasses, and functions + - note: untested + 1.1.8.000: + - added NaiveBayes classification engine + - note: untested + 1.1.7.000: + - added knn() + - added confusion matrix to decisiontree() + 1.1.6.002: + - changed layout of __changelog to be vscode friendly + 1.1.6.001: + - added additional hyperparameters to decisiontree() + 1.1.6.000: + - fixed __version__ + - fixed __all__ order + - added decisiontree() + 1.1.5.003: + - added pca + 1.1.5.002: + - reduced import list + - added kmeans clustering engine + 1.1.5.001: + - simplified regression by using .to(device) + 1.1.5.000: + - added polynomial regression to regression(); untested + 1.1.4.000: + - added trueskill() + 1.1.3.002: + - renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2 + 1.1.3.001: + - changed glicko2() to return tuple instead of array + 1.1.3.000: + - added glicko2_engine class and glicko() + - verified glicko2() accuracy + 1.1.2.003: + - fixed elo() + 1.1.2.002: + - added elo() + - elo() has bugs to be fixed + 1.1.2.001: + - readded regrression import + 1.1.2.000: + - integrated regression.py as regression class + - removed regression import + - fixed metadata for regression class + - fixed metadata for analysis class + 1.1.1.001: + - regression_engine() bug fixes, now actaully regresses + 1.1.1.000: + - added regression_engine() + - added all regressions except polynomial + 1.1.0.007: + - updated _init_device() + 1.1.0.006: + - removed useless try statements + 1.1.0.005: + - removed impossible outcomes + 1.1.0.004: + - added performance metrics (r^2, mse, rms) + 1.1.0.003: + - resolved nopython mode for mean, median, stdev, variance + 1.1.0.002: + - snapped (removed) majority of uneeded imports + - forced object mode (bad) on all jit + - TODO: stop numba complaining about not being able to compile in nopython mode + 1.1.0.001: + - removed from sklearn import * to resolve uneeded wildcard imports + 1.1.0.000: + - removed c_entities,nc_entities,obstacles,objectives from __all__ + - applied numba.jit to all functions + - depreciated and removed stdev_z_split + - cleaned up histo_analysis to include numpy and numba.jit optimizations + - depreciated and removed all regression functions in favor of future pytorch optimizer + - depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data) + - optimized z_normalize using sklearn.preprocessing.normalize + - TODO: implement kernel/function based pytorch regression optimizer + 1.0.9.000: + - refactored + - numpyed everything + - removed stats in favor of numpy functions + 1.0.8.005: + - minor fixes + 1.0.8.004: + - removed a few unused dependencies + 1.0.8.003: + - added p_value function + 1.0.8.002: + - updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001 + 1.0.8.001: + - refactors + - bugfixes + 1.0.8.000: + - depreciated histo_analysis_old + - depreciated debug + - altered basic_analysis to take array data instead of filepath + - refactor + - optimization + 1.0.7.002: + - bug fixes + 1.0.7.001: + - bug fixes + 1.0.7.000: + - added tanh_regression (logistical regression) + - bug fixes + 1.0.6.005: + - added z_normalize function to normalize dataset + - bug fixes + 1.0.6.004: + - bug fixes + 1.0.6.003: + - bug fixes + 1.0.6.002: + - bug fixes + 1.0.6.001: + - corrected __all__ to contain all of the functions + 1.0.6.000: + - added calc_overfit, which calculates two measures of overfit, error and performance + - added calculating overfit to optimize_regression + 1.0.5.000: + - added optimize_regression function, which is a sample function to find the optimal regressions + - optimize_regression function filters out some overfit funtions (functions with r^2 = 1) + - planned addition: overfit detection in the optimize_regression function + 1.0.4.002: + - added __changelog__ + - updated debug function with log and exponential regressions + 1.0.4.001: + - added log regressions + - added exponential regressions + - added log_regression and exp_regression to __all__ + 1.0.3.008: + - added debug function to further consolidate functions + 1.0.3.007: + - added builtin benchmark function + - added builtin random (linear) data generation function + - added device initialization (_init_device) + 1.0.3.006: + - reorganized the imports list to be in alphabetical order + - added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives + 1.0.3.005: + - major bug fixes + - updated historical analysis + - depreciated old historical analysis + 1.0.3.004: + - added __version__, __author__, __all__ + - added polynomial regression + - added root mean squared function + - added r squared function + 1.0.3.003: + - bug fixes + - added c_entities + 1.0.3.002: + - bug fixes + - added nc_entities, obstacles, objectives + - consolidated statistics.py to analysis.py + 1.0.3.001: + - compiled 1d, column, and row basic stats into basic stats function + 1.0.3.000: + - added historical analysis function + 1.0.2.xxx: + - added z score test + 1.0.1.xxx: + - major bug fixes + 1.0.0.xxx: + - added loading csv + - added 1d, column, row basic stats +""" + +__author__ = ( + "Arthur Lu ", + "Jacob Levine ", +) + +__all__ = [ + '_init_device', + 'load_csv', + 'basic_stats', + 'z_score', + 'z_normalize', + 'histo_analysis', + 'regression', + 'elo', + 'gliko2', + 'trueskill', + 'RegressionMetrics', + 'ClassificationMetrics', + 'kmeans', + 'pca', + 'decisiontree', + 'knn_classifier', + 'knn_regressor', + 'NaiveBayes', + 'SVM', + 'random_forest_classifier', + 'random_forest_regressor', + 'Regression', + 'Gliko2', + # all statistics functions left out due to integration in other functions +] + +# now back to your regularly scheduled programming: + +# imports (now in alphabetical order! v 1.0.3.006): + +import csv +import numba +from numba import jit +import numpy as np +import math +import sklearn +from sklearn import * +import torch +try: + from analysis import trueskill as Trueskill +except: + import trueskill as Trueskill + +class error(ValueError): + pass + +def _init_device(): # initiates computation device for ANNs + device = 'cuda:0' if torch.cuda.is_available() else 'cpu' + return device + +def load_csv(filepath): + with open(filepath, newline='') as csvfile: + file_array = np.array(list(csv.reader(csvfile))) + csvfile.close() + return file_array + +# expects 1d array +@jit(forceobj=True) +def basic_stats(data): + + data_t = np.array(data).astype(float) + + _mean = mean(data_t) + _median = median(data_t) + _stdev = stdev(data_t) + _variance = variance(data_t) + _min = npmin(data_t) + _max = npmax(data_t) + + return _mean, _median, _stdev, _variance, _min, _max + +# returns z score with inputs of point, mean and standard deviation of spread +@jit(forceobj=True) +def z_score(point, mean, stdev): + score = (point - mean) / stdev + + return score + +# expects 2d array, normalizes across all axes +@jit(forceobj=True) +def z_normalize(array, *args): + + array = np.array(array) + for arg in args: + array = sklearn.preprocessing.normalize(array, axis = arg) + + return array + +@jit(forceobj=True) +# expects 2d array of [x,y] +def histo_analysis(hist_data): + + hist_data = np.array(hist_data) + derivative = np.array(len(hist_data) - 1, dtype = float) + t = np.diff(hist_data) + derivative = t[1] / t[0] + np.sort(derivative) + + return basic_stats(derivative)[0], basic_stats(derivative)[3] + +def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array + + regressions = [] + Regression().set_device(ndevice) + + if 'lin' in args: # formula: ax + b + + model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True) + params = model[0].parameters + params[:] = map(lambda x: x.item(), params) + regressions.append((params, model[1][::-1][0])) + + if 'log' in args: # formula: a log (b(x + c)) + d + + model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True) + params = model[0].parameters + params[:] = map(lambda x: x.item(), params) + regressions.append((params, model[1][::-1][0])) + + if 'exp' in args: # formula: a e ^ (b(x + c)) + d + + model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True) + params = model[0].parameters + params[:] = map(lambda x: x.item(), params) + regressions.append((params, model[1][::-1][0])) + + if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ... + + plys = [] + limit = len(outputs[0]) + + for i in range(2, limit): + + model = sklearn.preprocessing.PolynomialFeatures(degree = i) + model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression()) + model = model.fit(np.rot90(inputs), np.rot90(outputs)) + + params = model.steps[1][1].intercept_.tolist() + params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::]) + params.flatten() + params = params.tolist() + + plys.append(params) + + regressions.append(plys) + + if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x) + + model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True) + params = model[0].parameters + params[:] = map(lambda x: x.item(), params) + regressions.append((params, model[1][::-1][0])) + + return regressions + +@jit(nopython=True) +def elo(starting_score, opposing_score, observed, N, K): + + expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N)) + + return starting_score + K*(np.sum(observed) - np.sum(expected)) + +@jit(forceobj=True) +def gliko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations): + + player = Gliko2(rating = starting_score, rd = starting_rd, vol = starting_vol) + + player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations) + + return (player.rating, player.rd, player.vol) + +@jit(forceobj=True) +def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]] + + team_ratings = [] + + for team in teams_data: + team_temp = [] + for player in team: + player = Trueskill.Rating(player[0], player[1]) + team_temp.append(player) + team_ratings.append(team_temp) + + return Trueskill.rate(teams_data, observations) + +class RegressionMetrics(): + + def __new__(cls, predictions, targets): + + return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets) + + def r_squared(self, predictions, targets): # assumes equal size inputs + + return sklearn.metrics.r2_score(targets, predictions) + + def mse(self, predictions, targets): + + return sklearn.metrics.mean_squared_error(targets, predictions) + + def rms(self, predictions, targets): + + return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions)) + +class ClassificationMetrics(): + + def __new__(cls, predictions, targets): + + return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets) + + def cm(self, predictions, targets): + + return sklearn.metrics.confusion_matrix(targets, predictions) + + def cr(self, predictions, targets): + + return sklearn.metrics.classification_report(targets, predictions) + +@jit(nopython=True) +def mean(data): + + return np.mean(data) + +@jit(nopython=True) +def median(data): + + return np.median(data) + +@jit(nopython=True) +def stdev(data): + + return np.std(data) + +@jit(nopython=True) +def variance(data): + + return np.var(data) + +@jit(nopython=True) +def npmin(data): + + return np.amin(data) + +@jit(nopython=True) +def npmax(data): + + return np.amax(data) + +@jit(forceobj=True) +def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"): + + kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm) + kernel.fit(data) + predictions = kernel.predict(data) + centers = kernel.cluster_centers_ + + return centers, predictions + +@jit(forceobj=True) +def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None): + + kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state) + + return kernel.fit_transform(data) + +@jit(forceobj=True) +def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth) + model = model.fit(data_train,labels_train) + predictions = model.predict(data_test) + metrics = ClassificationMetrics(predictions, labels_test) + + return model, metrics + +@jit(forceobj=True) +def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.neighbors.KNeighborsClassifier() + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + +def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None): + + data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1) + model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs) + model.fit(data_train, outputs_train) + predictions = model.predict(data_test) + + return model, RegressionMetrics(predictions, outputs_test) + +class NaiveBayes: + + def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing) + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + + def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior) + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + + def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior) + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + + def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm) + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + +class SVM: + + class CustomKernel: + + def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state): + + return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state) + + class StandardKernel: + + def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None): + + return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state) + + class PrebuiltKernel: + + class Linear: + + def __new__(cls): + + return sklearn.svm.SVC(kernel = 'linear') + + class Polynomial: + + def __new__(cls, power, r_bias): + + return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias) + + class RBF: + + def __new__(cls, gamma): + + return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma) + + class Sigmoid: + + def __new__(cls, r_bias): + + return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias) + + def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs + + return kernel.fit(train_data, train_outputs) + + def eval_classification(self, kernel, test_data, test_outputs): + + predictions = kernel.predict(test_data) + + return ClassificationMetrics(predictions, test_outputs) + + def eval_regression(self, kernel, test_data, test_outputs): + + predictions = kernel.predict(test_data) + + return RegressionMetrics(predictions, test_outputs) + +def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight) + kernel.fit(data_train, labels_train) + predictions = kernel.predict(data_test) + + return kernel, ClassificationMetrics(predictions, labels_test) + +def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False): + + data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1) + kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start) + kernel.fit(data_train, outputs_train) + predictions = kernel.predict(data_test) + + return kernel, RegressionMetrics(predictions, outputs_test) + +class Regression: + + # Titan Robotics Team 2022: CUDA-based Regressions Module + # Written by Arthur Lu & Jacob Levine + # Notes: + # this module has been automatically inegrated into analysis.py, and should be callable as a class from the package + # this module is cuda-optimized and vectorized (except for one small part) + # setup: + + __version__ = "1.0.0.003" + + # changelog should be viewed using print(analysis.regression.__changelog__) + __changelog__ = """ + 1.0.0.003: + - bug fixes + 1.0.0.002: + -Added more parameters to log, exponential, polynomial + -Added SigmoidalRegKernelArthur, because Arthur apparently needs + to train the scaling and shifting of sigmoids + + 1.0.0.001: + -initial release, with linear, log, exponential, polynomial, and sigmoid kernels + -already vectorized (except for polynomial generation) and CUDA-optimized + """ + + __author__ = ( + "Jacob Levine ", + "Arthur Lu " + ) + + __all__ = [ + 'factorial', + 'take_all_pwrs', + 'num_poly_terms', + 'set_device', + 'LinearRegKernel', + 'SigmoidalRegKernel', + 'LogRegKernel', + 'PolyRegKernel', + 'ExpRegKernel', + 'SigmoidalRegKernelArthur', + 'SGDTrain', + 'CustomTrain' + ] + + global device + + device = "cuda:0" if torch.torch.cuda.is_available() else "cpu" + + #todo: document completely + + def set_device(self, new_device): + device=new_device + + class LinearRegKernel(): + parameters= [] + weights=None + bias=None + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.bias] + def forward(self,mtx): + long_bias=self.bias.repeat([1,mtx.size()[1]]) + return torch.matmul(self.weights,mtx)+long_bias + + class SigmoidalRegKernel(): + parameters= [] + weights=None + bias=None + sigmoid=torch.nn.Sigmoid() + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.bias] + def forward(self,mtx): + long_bias=self.bias.repeat([1,mtx.size()[1]]) + return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias) + + class SigmoidalRegKernelArthur(): + parameters= [] + weights=None + in_bias=None + scal_mult=None + out_bias=None + sigmoid=torch.nn.Sigmoid() + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.in_bias=torch.rand(1, requires_grad=True, device=device) + self.scal_mult=torch.rand(1, requires_grad=True, device=device) + self.out_bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias] + def forward(self,mtx): + long_in_bias=self.in_bias.repeat([1,mtx.size()[1]]) + long_out_bias=self.out_bias.repeat([1,mtx.size()[1]]) + return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias + + class LogRegKernel(): + parameters= [] + weights=None + in_bias=None + scal_mult=None + out_bias=None + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.in_bias=torch.rand(1, requires_grad=True, device=device) + self.scal_mult=torch.rand(1, requires_grad=True, device=device) + self.out_bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias] + def forward(self,mtx): + long_in_bias=self.in_bias.repeat([1,mtx.size()[1]]) + long_out_bias=self.out_bias.repeat([1,mtx.size()[1]]) + return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias + + class ExpRegKernel(): + parameters= [] + weights=None + in_bias=None + scal_mult=None + out_bias=None + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.in_bias=torch.rand(1, requires_grad=True, device=device) + self.scal_mult=torch.rand(1, requires_grad=True, device=device) + self.out_bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias] + def forward(self,mtx): + long_in_bias=self.in_bias.repeat([1,mtx.size()[1]]) + long_out_bias=self.out_bias.repeat([1,mtx.size()[1]]) + return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias + + class PolyRegKernel(): + parameters= [] + weights=None + bias=None + power=None + def __init__(self, num_vars, power): + self.power=power + num_terms=self.num_poly_terms(num_vars, power) + self.weights=torch.rand(num_terms, requires_grad=True, device=device) + self.bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.bias] + def num_poly_terms(self,num_vars, power): + if power == 0: + return 0 + return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1) + def factorial(self,n): + if n==0: + return 1 + else: + return n*self.factorial(n-1) + def take_all_pwrs(self, vec, pwr): + #todo: vectorize (kinda) + combins=torch.combinations(vec, r=pwr, with_replacement=True) + out=torch.ones(combins.size()[0]).to(device).to(torch.float) + for i in torch.t(combins).to(device).to(torch.float): + out *= i + if pwr == 1: + return out + else: + return torch.cat((out,self.take_all_pwrs(vec, pwr-1))) + def forward(self,mtx): + #TODO: Vectorize the last part + cols=[] + for i in torch.t(mtx): + cols.append(self.take_all_pwrs(i,self.power)) + new_mtx=torch.t(torch.stack(cols)) + long_bias=self.bias.repeat([1,mtx.size()[1]]) + return torch.matmul(self.weights,new_mtx)+long_bias + + def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False): + optim=torch.optim.SGD(kernel.parameters, lr=learning_rate) + data_cuda=data.to(device) + ground_cuda=ground.to(device) + if (return_losses): + losses=[] + for i in range(iterations): + with torch.set_grad_enabled(True): + optim.zero_grad() + pred=kernel.forward(data_cuda) + ls=loss(pred,ground_cuda) + losses.append(ls.item()) + ls.backward() + optim.step() + return [kernel,losses] + else: + for i in range(iterations): + with torch.set_grad_enabled(True): + optim.zero_grad() + pred=kernel.forward(data_cuda) + ls=loss(pred,ground_cuda) + ls.backward() + optim.step() + return kernel + + def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False): + data_cuda=data.to(device) + ground_cuda=ground.to(device) + if (return_losses): + losses=[] + for i in range(iterations): + with torch.set_grad_enabled(True): + optim.zero_grad() + pred=kernel.forward(data) + ls=loss(pred,ground) + losses.append(ls.item()) + ls.backward() + optim.step() + return [kernel,losses] + else: + for i in range(iterations): + with torch.set_grad_enabled(True): + optim.zero_grad() + pred=kernel.forward(data_cuda) + ls=loss(pred,ground_cuda) + ls.backward() + optim.step() + return kernel + +class Gliko2: + + _tau = 0.5 + + def getRating(self): + return (self.__rating * 173.7178) + 1500 + + def setRating(self, rating): + self.__rating = (rating - 1500) / 173.7178 + + rating = property(getRating, setRating) + + def getRd(self): + return self.__rd * 173.7178 + + def setRd(self, rd): + self.__rd = rd / 173.7178 + + rd = property(getRd, setRd) + + def __init__(self, rating = 1500, rd = 350, vol = 0.06): + + self.setRating(rating) + self.setRd(rd) + self.vol = vol + + def _preRatingRD(self): + + self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2)) + + def update_player(self, rating_list, RD_list, outcome_list): + + rating_list = [(x - 1500) / 173.7178 for x in rating_list] + RD_list = [x / 173.7178 for x in RD_list] + + v = self._v(rating_list, RD_list) + self.vol = self._newVol(rating_list, RD_list, outcome_list, v) + self._preRatingRD() + + self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v)) + + tempSum = 0 + for i in range(len(rating_list)): + tempSum += self._g(RD_list[i]) * \ + (outcome_list[i] - self._E(rating_list[i], RD_list[i])) + self.__rating += math.pow(self.__rd, 2) * tempSum + + + def _newVol(self, rating_list, RD_list, outcome_list, v): + + i = 0 + delta = self._delta(rating_list, RD_list, outcome_list, v) + a = math.log(math.pow(self.vol, 2)) + tau = self._tau + x0 = a + x1 = 0 + + while x0 != x1: + # New iteration, so x(i) becomes x(i-1) + x0 = x1 + d = math.pow(self.__rating, 2) + v + math.exp(x0) + h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \ + / d + 0.5 * math.exp(x0) * math.pow(delta / d, 2) + h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \ + (math.pow(self.__rating, 2) + v) \ + / math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \ + * (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3) + x1 = x0 - (h1 / h2) + + return math.exp(x1 / 2) + + def _delta(self, rating_list, RD_list, outcome_list, v): + + tempSum = 0 + for i in range(len(rating_list)): + tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i])) + return v * tempSum + + def _v(self, rating_list, RD_list): + + tempSum = 0 + for i in range(len(rating_list)): + tempE = self._E(rating_list[i], RD_list[i]) + tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE) + return 1 / tempSum + + def _E(self, p2rating, p2RD): + + return 1 / (1 + math.exp(-1 * self._g(p2RD) * \ + (self.__rating - p2rating))) + + def _g(self, RD): + + return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2)) + + def did_not_compete(self): + + self._preRatingRD() \ No newline at end of file diff --git a/data analysis/analysis/__pycache__/analysis.cpython-37.pyc b/data analysis/analysis/__pycache__/analysis.cpython-37.pyc index b1d064afae53d4805f8c9d107c21cebf29d4b82e..97b518459eae4c2a15e4a4fe85f6cf9f88142875 100644 GIT binary patch delta 7502 zcmcIo33OD~dDfjxqm@m7z?L*Z2p9>pfP}C>77|Ec1QHSgn_(HAq>&hyjr(Shw0UAmBvZz;v|k6+i~19xV8Oi$8HnHI|*shHq;6Izx#w{B*Zc9 zIUOB+=idMR`@QeK|9hW)+4Ae#Et&Nh8L3J9yRE!s=O6AqllhFrx(}J#Uztp3ys6Xg)MPe5UJf<#bQ6hyD7vcmZS9!dg*7?F-jTG8_?2YC+v&V@tY0k1os+>*&RW4Z=d1 zi$d)EfkjO$@zSCkahTp;^t5QAlO?(0E;?IMGj$(SOMng^lVyN1O7ldJ7L`_uW3;<; zuIm1!NFTAj4x#sgNK+4_nGtUQ}@z)oK;b^6L9yn)G#feNu*{+bWMjC_!?7 z=a0~`CAsw7#jCC#m6o?LeFF9aOn!pdD<&U?BG{EsArDagx|t4{#^aN8|B@4F2SH6R z1pZ;Vx#DK`s1eWP&TyzZrt`V?2DPa4_f25&c9wgZep%6G?)ec~Q<;-CK8j<^^b9i< z(4&=EY05Ro$z$+}-mSEYGxUqf8YdnIKC#PG(lB|BPA#oTkxLTkn0%iuEv-$~qg|ui zc#K}69aS~7qRJ^u4V6rLm7cAtNi}R*&>y0;C{eY0Ve=oV=x?heKO<=$U%De2A6o7UcBL$xR+Y1v(mxswn-Q^ zXkT@qTbcO_p2|~z(|`v7%FJJ4q$~`n+-CCpeR{q6zG<~Qa$Ag)s85f2b^onCc|RRl zzJSm0W6S4lFl;PbN$3QXy@6gfTrvIZa*K{olyG#ARTHlB)l*j0j=8v;F zMOl?kfn`f@G$>Q(1n^i2PZK6_uzgGfZdSa z2Al;v19%pIy>gFn5!7!nc&0Tq`}{q-JHk?LLlxEaaAL;rD7r^{?@UUn9C7{{ZAvpR zDyz+R#N)9~VWn0I*M3lSMK~5NyVB3j7#aID>D7bbaCEmn)HBw5I=(Wedt8Fk&8nnM zSUk($N1!hNuAXD8=8b}jM~1T}hU24!GHFWPsf;mh(sOn52XUlFb{nIAVDMyYhy|kl zP&nw<0?qYT9y?WU#`*UWq+bU75OA$dlCOS>m`T0$4_$d8Y!XThXNNzeNjxf}>c=J# z_LSdg_5A#XV}XGGO0P2~%&PMGRVaA50Qfn+)7e!y!bNYbI&n2`<31X;P*?`9;%WM- za4-_^1%09D7jktp11|Yv_uNgKw9?G$OvieE$fwEr1Z_WuHZ*ME#_K3={q_Qt02MoS@=D!S);+X-jvafpj$T;5 z+SGkr>c()O-z-XN6ZF5Is6Vt}eXi1vv|g#&!m3O5WGmGh>9-qdOx0P|w))2A1f3rw z>b$49-Sl~4cUdQM%U_JXMYy`s3mjS zO0c5eaauAR_>&*g`Igd*olN3gQ#E&piZ+(mLGjRzjcdvtfC|+M*hd(cFw$J0r8d%4 zpAn8lBeAH?ea&kd=Zl^6*~YE;N>p8n38L~7DEt&KNKX!C(H*UmL>GOvwPN;LAmU`m zj{)#Oo(KFAC4erq+H)2o0(dhL!EC3^=`d`)nheQW%5S@K{+R2B8QqhN^pKZZAwM^~ zd{>(7%j0ye?a(6CmZ=^JkF=4>YJy&VHXLg{;2#fto}D3!OI1h z{|=xE(L|+r2&;oQDYUEIHhm8gmddmw%k`p2q>EIG9H9R83A&?6aw6~Hxcnc$sK4?v zOeb^@3-E7j>Oj57;F;d0g}TDQMt(CM)T3AJp=OzB?S!1_|0Z&5G_7CUJKSkAN1Dj* zz{qz2@yyw$^IRV;-%@FHv}0)t1-54AZR4SlffB)b}V-QHq(P!*NLNae(PL2 zg#MOhdOj^u$I&6@K$KrdLtU~E%+INLhhNj>Ej)BvYt|7C&q-loui>xL~H;+sxYiJM_r)uVEZ z8lcqL$seKqz$3RqS@Br+`#Sk^Wv}FKFG`PYSh=;3e%1Pba~kake9wF}N;7i;P0|Cv zxuXf&+&jKd#gDLQPL(Ia)*0qc8-5n^B!_&x-e9!vswFGOs`?Ka3f8;h$60Ly z?3$HWZI?>4a!3_shv4nFWEq|xS|Qv%W^H$8nhCRqBix&Ktee)XR(FAnCu#@%aX5bi z%8D7^I)vuz;K;aB=`w8mZ7RY&zpAuDFux28jvg6~@kP@G${N60z)gT0x)`1-{FE2T zv2SL=yy3dYdNG(_5?t!2<*J7oFxCO-0xh3`BZ!;M0TuS;9E{?|mE8i+<^l=?p@?mqM91X8#Xnp59_)_P|~8V!Wldq z7@ncm3BHwYiROrHv_HB%V-fR@9BR3b-eLMq`h9dK^K6gJ5}mX^*5WK1;h`xF*~xa@ z7j5h6rcYx2nWeC}7@)KE%RTcxI=nbXJ#c&J_4+qb}14oj?<0f0Fr9XQaypUB;JZelX z#Z(#Ffz^5j!{Y7X{|2doPiFHc`z!bu;Hlrw>#^Za`cH^K_}#<*{Cl_7e50%5vD;}l zyj{KkH^$0}x(<{Tm^W>Y2ES;tDnn?7l?6SPzB0qo zS8ni2fMX!regpH}P6Y#xRE~Ntt0B9bfj<_g6E~6WmCAq$sg8$3H0!|7E<~jA#RVp= z530;iR1{D@Qh;P!v#F2eJ@%+C7-<+^{+6-SLp1ZCrs}K87M}-|Aa!LZr&YeuyPY^# zV29Z!==p=%Dz$@k@J$_+5iuMUwR?so;vYGp9!uNm@s^?aDe4)lb7JTD>-JH8kt*Qc z@wLHugG-nsD*%;P%o_hLUXP^`0M4@EjL0y5BZ>CQeXw4R1$Dk9rs`r=#|x)KVs9jp zD-pcf5p!>D!c;xK)PHE2xS8%cR6KYWM2-XY0PY6d1NaIco1wYASxwx@&HOb%kxyP` zz-NTN!sKDVUxVA7Vp0_2-+}xMkelVx7`Fnx$-wU(APlOBsZ}v622+B+(*6qU(A{iG zsx66Iml(2FtR0>6dOE zo9CyRE*#Dl{girSNuFvJ7eX!>>v(&YDFD1!%XHF?HO?Q*CLEvK{e%mcJz+&QpP9Cmx{&oQTd87epgJBTG;TXuxZ0j8|LJT zCW_8!6l3YJIS~%0cLk@Ik?B^~zQ&}WJn5ZHwoqIT`#sns8jud;kND=A6 zEyjsVyIW+5EIVyjGl3RXJue=iPpUSSAh%{}SdYtKyWw}sc>$w6Ds`{JOfmG(4k>wD z8c^h>%B@PHA_>wH96S3fO~&UM{DZR z{V7^F7#SECTg?NnCz+~-DaEAi8DJ_|$V_h}F`@mYo8iN>U30>^7BObemH|4w=nrBM zJ#xi(v6-H`qOh@sIpkr$5x`Nv4S*W~Hvw)2+yb~2a13x8gX!9(%ZMJ5lFAoP7w4&Y z@y&%0GqZwm9ZRqy5R3NcQVDxgB&NwvA1t2fRaQ?x(cb{>01!Y~{X8gT@VHu0S=|1B zwqAL6u3GnYGcB$g@qiKBr^{O?wYHQas;n*H-MhKAVD4r}|1|(J=k-V!GhHFAO%ECJ zZVY?@@OOZdbbsx_jBOy*67Et4$8h^&x>#E#*3hiFc!6csl7(Mhw~9sH1Gz8K6Lm8S zhglt~tjc@ApiJIIpVXBsLhj6rNFbsIJ9oB4rD2Mgnc9O^+>n0{?)w0z0AB)FuE8sc zElIJv?bN;GSo0_j{Uf*^0$^_B*8mR!z7F^Y0IUyn9lc*A-_kr^!v73#_51G!gYy3} z)%V9hk1Z{9C0uuoWj#6c{?gxhhImeIUNx;3tD--XOmTL!V7DG<)As6yKYfMPWf(y% z;#(#Y9;$iGl-&@l0VLA=PiXc5E}cw_P8$SzyUR(p)u)Mky0iY&F#j5s%^K#Pe3T{q zp60F)m)mGKsD(zl<{8zsZ^Pu{fF}T-$-lRkWr`BIxa`ZlL-NOZcw0fS>23=~G>IKC zXkz44E8jDg@ve<_g+jrRo@ZU!^QYkS<3+$v@t@9hNUQ{7!glrbMDL zdmw}Tliy_IB%>j} z#n9^WIukAVRo4{3%GunL4#h;N`LR^)4{3OQ62G95;D*mP{%wA?#J?uPbf0LK~pPW5di zPov{mz`p>#2T+yv`=Fi!s3NZl{}0f-Mb*JLlZ~`)WsQil!xQP=m06zUeBP-u&uy14 z&=V^+iaPSFst_xwZk4b183@DlUt*KR__$W};CZO{Av*eFQaYbO?^?hmBARNGml4t$ zTC&<(`mfMa2RH+Gk)gFo{s{Ds8GKE0CFrws`|1h(@jtyfJ9|}9{6Ap^iZ)H43#)&V z2M7X{99#~i3ukGV?Y4h8Yw7tp>`9|)Vm$+O04DbrzRkaA$ug}h1 z2U$1wx$Rjl{FA>RV||4OX9RCnbut{MZ>*o|L{E@jU%w(J@k!tuV7PKazL09?hc=88 zVLG&7OQB*@XW#%EOq+mT0xbTlmTY0rw3Y>vUqB}og8T&l_T;YszgBxZm&tm%wPgz5 zFuu}qY}SbSJ;uz81o(3%$lt5{L12BGoTR_ncyP`!sKHKGyVFeX(PTKFt{H024y~2s zY%OU~))RqF9)3Lj2FktwI0<+Sa1QV~gP9rD_5^n5TD(i@hWvN*{|6mtomBT*kpBr7 z>XLi|eX4$pR$0|5mRJCJc0U0r+-7!1oq!C_{XpVz#LPGu~~2l?J$FVspU zKHvd5-d8093SXkt+mF^L*;I?~12Fs#;OBrDfIk8TJOuqGz=ul9M@+s#`GLmLVg5qW zv_~QmrN>g16v7|4^Toce269E=uo&Ey&7>IUm!F&A8QuSLG`2IBsEWmutdzh*V=@r|J0zM zWSI8RLwt`zoJLzZZrJ{5Au8`yL2+Wj21Ddtn_%FFj^vN?>0n3Xf23Nye%d7?PntUH zkn?n6XE|lHFQ?KSC;oqeb-{$gL05JZP-W*0fy;_^HQfITqD^y9oj#f7?ku^ikgsMl zA9KhbHjS9qm*K%%0G0lvWsAPV*6W{$_tE<@oedT^5pOPC2!6@B{W?rXFcO!)2Ltq> z8i0PEw)rMG(UV7KuibAI8=?46QMlg}k)-R^bO=F9K6USUw_T+%-KtHQ?a?r9F>!vq z;di=dgbyLL)z?Etm61wNS2385c7EPD&y?4ttoR+>dON=>_DFxKrN{6)qFr&hUDW|_ z&Y;&r&uYqIhLsLzQZHsolSH!oPCj7UcMY#LiAl7~sT$)?X^--g!gh$IM)aOQIKC&T z?vzu0WTiK;W>vP;gsA1JW<})_&RMn7^){1Pj=l#YwZglV=~i!+l^ka@#-9j&$Ho;6 zs$9!NQZ~`pSYb1Ei4_apWcfbGQSb*t2S3oo^%#FftLah)Obr-Zoif_RXTdd)s|PFt zEC-}gZ>+coahWMGsdt!m4s#kt6if%@W2o+XF1A+mCb@zUwbI&ZNWiW7L z371mQ3%_J0sDx9>9}oJn0Am1fOlE@`3&4JNa1Xf zsP5K*iDDtKeIybuFEW^^%^MrnMh!znDBn>>+5{dr)_2mV7ks+nrua@gU0h2a#kYDU zvJ3qyoxdd1)z{GD)@y8-4tH%=5_$Zcxw|`;vbt+MlanNNu*5hQ1UkByAy}A)h^7M6 zOLPCe)ZyI@K(%Dg&XlzA|lDS^1wrA$iH;(;Ys0{>u!p{0S9=Nw&Wm#1ymrUq`Dl0q{8PxYzJ(u_ zDN^}SCzA3{%>zE^ruP;(Vc{uS*{iAhiFGShE301&D@)C)-yRF9FU7OH6P?g=n$Gvu zyD|U#5^XKDl?Su=BXY~ZlHPpomIZ)mU>G<2Riqq4lK@!uraLC1FQn|QH=Ma`vG+Ov8uSCPr zs+bjnCBYA_|As;6_F0l@?h@7|NcM`g!_y|8H`@}4Uam-Mlea?VAUnB$ae(oFa@OE? zM!Ldnn#>!ZV|%5SX=~Xm0)@J6y0wVLe?SWwG97(ky8ZBc*F}&M==sC>{P)9ihx5sC k