mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
analysis.py v 1.1.13.001
analysis pkg v 1.0.0.006
This commit is contained in:
parent
b669e55283
commit
a0e1293361
@ -1,6 +1,6 @@
|
|||||||
Metadata-Version: 2.1
|
Metadata-Version: 2.1
|
||||||
Name: analysis
|
Name: analysis
|
||||||
Version: 1.0.0.5
|
Version: 1.0.0.6
|
||||||
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
||||||
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||||
Author: The Titan Scouting Team
|
Author: The Titan Scouting Team
|
||||||
|
Binary file not shown.
@ -7,10 +7,14 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.13.000"
|
__version__ = "1.1.13.001"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.13.001:
|
||||||
|
- bug fix with linear regression not returning a proper value
|
||||||
|
- cleaned up regression
|
||||||
|
- fixed bug with polynomial regressions
|
||||||
1.1.13.000:
|
1.1.13.000:
|
||||||
- fixed all regressions to now properly work
|
- fixed all regressions to now properly work
|
||||||
1.1.12.006:
|
1.1.12.006:
|
||||||
@ -343,28 +347,27 @@ def histo_analysis(hist_data):
|
|||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
regressions = []
|
regressions = []
|
||||||
Regression().set_device(ndevice)
|
|
||||||
|
|
||||||
if 'lin' in args: # formula: ax + b
|
if 'lin' in args: # formula: ax + b
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
||||||
X = np.array(inputs).reshape(-1,1)
|
X = np.array(inputs)
|
||||||
y = np.array(outputs)
|
y = np.array(outputs)
|
||||||
|
|
||||||
model = sklearn.linear_model.LinearRegression().fit(X, y)
|
def func(x, a, b):
|
||||||
|
|
||||||
ret = model.coef_.flatten().tolist()
|
return a * x + b
|
||||||
ret.append(model.intercept_)
|
|
||||||
|
|
||||||
regressions.append((ret, model.score(X,y)))
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
||||||
print(e)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||||
@ -384,7 +387,6 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
||||||
print(e)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||||
@ -404,11 +406,13 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
||||||
print(e)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||||
|
|
||||||
|
inputs = [inputs]
|
||||||
|
outputs = [outputs]
|
||||||
|
|
||||||
plys = []
|
plys = []
|
||||||
limit = len(outputs[0])
|
limit = len(outputs[0])
|
||||||
|
|
||||||
@ -444,7 +448,6 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
||||||
print(e)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
return regressions
|
return regressions
|
||||||
|
@ -7,10 +7,14 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.13.000"
|
__version__ = "1.1.13.001"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.13.001:
|
||||||
|
- bug fix with linear regression not returning a proper value
|
||||||
|
- cleaned up regression
|
||||||
|
- fixed bug with polynomial regressions
|
||||||
1.1.13.000:
|
1.1.13.000:
|
||||||
- fixed all regressions to now properly work
|
- fixed all regressions to now properly work
|
||||||
1.1.12.006:
|
1.1.12.006:
|
||||||
@ -343,28 +347,27 @@ def histo_analysis(hist_data):
|
|||||||
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
regressions = []
|
regressions = []
|
||||||
Regression().set_device(ndevice)
|
|
||||||
|
|
||||||
if 'lin' in args: # formula: ax + b
|
if 'lin' in args: # formula: ax + b
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
||||||
X = np.array(inputs).reshape(-1,1)
|
X = np.array(inputs)
|
||||||
y = np.array(outputs)
|
y = np.array(outputs)
|
||||||
|
|
||||||
model = sklearn.linear_model.LinearRegression().fit(X, y)
|
def func(x, a, b):
|
||||||
|
|
||||||
ret = model.coef_.flatten().tolist()
|
return a * x + b
|
||||||
ret.append(model.intercept_)
|
|
||||||
|
|
||||||
regressions.append((ret, model.score(X,y)))
|
popt, pcov = scipy.optimize.curve_fit(func, X, y)
|
||||||
|
|
||||||
|
regressions.append((popt.flatten().tolist(), None))
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
||||||
print(e)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||||
@ -384,7 +387,6 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
||||||
print(e)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||||
@ -404,11 +406,13 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
||||||
print(e)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||||
|
|
||||||
|
inputs = [inputs]
|
||||||
|
outputs = [outputs]
|
||||||
|
|
||||||
plys = []
|
plys = []
|
||||||
limit = len(outputs[0])
|
limit = len(outputs[0])
|
||||||
|
|
||||||
@ -444,7 +448,6 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|
||||||
print(e)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
return regressions
|
return regressions
|
||||||
|
BIN
analysis-master/dist/analysis-1.0.0.5.tar.gz
vendored
BIN
analysis-master/dist/analysis-1.0.0.5.tar.gz
vendored
Binary file not shown.
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.6.tar.gz
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.6.tar.gz
vendored
Normal file
Binary file not shown.
@ -2,7 +2,7 @@ import setuptools
|
|||||||
|
|
||||||
setuptools.setup(
|
setuptools.setup(
|
||||||
name="analysis", # Replace with your own username
|
name="analysis", # Replace with your own username
|
||||||
version="1.0.0.005",
|
version="1.0.0.006",
|
||||||
author="The Titan Scouting Team",
|
author="The Titan Scouting Team",
|
||||||
author_email="titanscout2022@gmail.com",
|
author_email="titanscout2022@gmail.com",
|
||||||
description="analysis package developed by Titan Scouting for The Red Alliance",
|
description="analysis package developed by Titan Scouting for The Red Alliance",
|
||||||
|
@ -70,8 +70,10 @@ __all__ = [
|
|||||||
from analysis import analysis as an
|
from analysis import analysis as an
|
||||||
import data as d
|
import data as d
|
||||||
import time
|
import time
|
||||||
|
import warnings
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
warnings.filterwarnings("ignore")
|
||||||
while(True):
|
while(True):
|
||||||
|
|
||||||
current_time = time.time()
|
current_time = time.time()
|
||||||
@ -152,19 +154,19 @@ def simplestats(data, test):
|
|||||||
return an.histo_analysis([list(range(len(data))), data])
|
return an.histo_analysis([list(range(len(data))), data])
|
||||||
|
|
||||||
if(test == "regression_linear"):
|
if(test == "regression_linear"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['lin'], _iterations = 5000)
|
return an.regression(list(range(len(data))), data, ['lin'])
|
||||||
|
|
||||||
if(test == "regression_logarithmic"):
|
if(test == "regression_logarithmic"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['log'], _iterations = 5000)
|
return an.regression(list(range(len(data))), data, ['log'])
|
||||||
|
|
||||||
if(test == "regression_exponential"):
|
if(test == "regression_exponential"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['exp'], _iterations = 5000)
|
return an.regression(list(range(len(data))), data, ['exp'])
|
||||||
|
|
||||||
if(test == "regression_polynomial"):
|
if(test == "regression_polynomial"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['ply'], _iterations = 5000)
|
return an.regression(list(range(len(data))), data, ['ply'])
|
||||||
|
|
||||||
if(test == "regression_sigmoidal"):
|
if(test == "regression_sigmoidal"):
|
||||||
return an.regression('cpu', [list(range(len(data)))], [data], ['sig'], _iterations = 5000)
|
return an.regression(list(range(len(data))), data, ['sig'])
|
||||||
|
|
||||||
def push_to_database(apikey, competition, results, metrics):
|
def push_to_database(apikey, competition, results, metrics):
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user