mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-09-06 15:07:21 +00:00
lotta bug fixes
This commit is contained in:
Binary file not shown.
Binary file not shown.
@@ -758,7 +758,7 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
|||||||
x_test = []
|
x_test = []
|
||||||
y_test = []
|
y_test = []
|
||||||
|
|
||||||
for i in range (0, math.floor(len(x) * 0.4), 1):
|
for i in range (0, math.floor(len(x) * 0.5), 1):
|
||||||
index = random.randint(0, len(x) - 1)
|
index = random.randint(0, len(x) - 1)
|
||||||
|
|
||||||
x_test.append(x[index])
|
x_test.append(x[index])
|
||||||
|
1
data analysis/data/scores.csv
Normal file
1
data analysis/data/scores.csv
Normal file
@@ -0,0 +1 @@
|
|||||||
|
2022, 21, 23, 39, 50, 89, 97, 191, 213, 233, 236, 272, 289, 308, 310, 314, 317, 329, 355, 428, 436
|
|
@@ -41,6 +41,7 @@ import firebase_admin
|
|||||||
from firebase_admin import credentials
|
from firebase_admin import credentials
|
||||||
from firebase_admin import firestore
|
from firebase_admin import firestore
|
||||||
import analysis
|
import analysis
|
||||||
|
import titanlearn
|
||||||
import visualization
|
import visualization
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
@@ -59,7 +60,7 @@ def titanservice():
|
|||||||
file_list = glob.glob(source_dir + '/*.csv') #supposedly sorts by alphabetical order, skips reading teams.csv because of redundancy
|
file_list = glob.glob(source_dir + '/*.csv') #supposedly sorts by alphabetical order, skips reading teams.csv because of redundancy
|
||||||
data = []
|
data = []
|
||||||
files = [fn for fn in glob.glob('data/*.csv')
|
files = [fn for fn in glob.glob('data/*.csv')
|
||||||
if not os.path.basename(fn).startswith('teams')]
|
if not (os.path.basename(fn).startswith('teams'))] #scores will be handled sperately
|
||||||
|
|
||||||
for i in files:
|
for i in files:
|
||||||
data.append(analysis.load_csv(i))
|
data.append(analysis.load_csv(i))
|
||||||
@@ -67,6 +68,7 @@ def titanservice():
|
|||||||
stats = []
|
stats = []
|
||||||
measure_stats = []
|
measure_stats = []
|
||||||
teams = analysis.load_csv("data/teams.csv")
|
teams = analysis.load_csv("data/teams.csv")
|
||||||
|
scores = analysis.load_csv("data/scores.csv")
|
||||||
|
|
||||||
end = time.time()
|
end = time.time()
|
||||||
|
|
||||||
@@ -112,18 +114,81 @@ def titanservice():
|
|||||||
|
|
||||||
#print(r2best_curve)
|
#print(r2best_curve)
|
||||||
|
|
||||||
measure_stats.append(teams[i] + ["|"] + list(analysis.basic_stats(line, 0, 0)) + ["|"] + list(analysis.histo_analysis(line, 1, -3, 3)) + ["|"] + ofbest_curve + ["|"] + r2best_curve)
|
|
||||||
|
measure_stats.append(teams[i] + list(analysis.basic_stats(line, 0, 0)) + list(analysis.histo_analysis(line, 1, -3, 3)) + ofbest_curve + r2best_curve)
|
||||||
|
|
||||||
stats.append(list(measure_stats))
|
stats.append(list(measure_stats))
|
||||||
|
nishant = []
|
||||||
|
for i in range(len(scores)):
|
||||||
|
|
||||||
|
ofbest_curve = [None]
|
||||||
|
r2best_curve = [None]
|
||||||
|
|
||||||
|
line = measure[i]
|
||||||
|
|
||||||
|
#print(line)
|
||||||
|
|
||||||
|
x = list(range(len(line)))
|
||||||
|
eqs, rmss, r2s, overfit = analysis.optimize_regression(x, line, 10, 1)
|
||||||
|
|
||||||
|
beqs, brmss, br2s, boverfit = analysis.select_best_regression(eqs, rmss, r2s, overfit, "min_overfit")
|
||||||
|
|
||||||
|
#print(eqs, rmss, r2s, overfit)
|
||||||
|
|
||||||
|
ofbest_curve.append(beqs)
|
||||||
|
ofbest_curve.append(brmss)
|
||||||
|
ofbest_curve.append(br2s)
|
||||||
|
ofbest_curve.append(boverfit)
|
||||||
|
ofbest_curve.pop(0)
|
||||||
|
|
||||||
|
#print(ofbest_curve)
|
||||||
|
|
||||||
|
beqs, brmss, br2s, boverfit = analysis.select_best_regression(eqs, rmss, r2s, overfit, "max_r2s")
|
||||||
|
|
||||||
|
r2best_curve.append(beqs)
|
||||||
|
r2best_curve.append(brmss)
|
||||||
|
r2best_curve.append(br2s)
|
||||||
|
r2best_curve.append(boverfit)
|
||||||
|
r2best_curve.pop(0)
|
||||||
|
|
||||||
|
#print(r2best_curve)
|
||||||
|
|
||||||
|
z = len(scores[0]) + 1
|
||||||
|
nis_num = []
|
||||||
|
|
||||||
|
nis_num.append(eval(str(ofbest_curve[0])))
|
||||||
|
nis_num.append(eval(str(r2best_curve[0])))
|
||||||
|
|
||||||
|
nis_num.append((eval(ofbest_curve[0]) + eval(r2best_curve[0])) / 2)
|
||||||
|
|
||||||
|
nishant.append(teams[i] + nis_num)
|
||||||
|
|
||||||
json_out = {}
|
json_out = {}
|
||||||
|
score_out = {}
|
||||||
|
|
||||||
for i in range(len(stats)):
|
#print(stats)
|
||||||
json_out[files[i]]=str(stats[i])
|
|
||||||
|
|
||||||
#print(json_out)
|
for i in range(len(teams)):
|
||||||
|
json_out[str(teams[i][0])] = (stats[0][i])
|
||||||
|
|
||||||
db.collection(u'stats').document(u'stats-noNN').set(json_out)
|
for i in range(len(teams)):
|
||||||
|
score_out[str(teams[i][0])] = (nishant[i])
|
||||||
|
|
||||||
|
print(json_out)
|
||||||
|
|
||||||
|
#print(json_out.get('5'))
|
||||||
|
|
||||||
|
location = db.collection(u'stats').document(u'stats-noNN')
|
||||||
|
for i in range(len(teams)):
|
||||||
|
general_general_stats = location.collection(teams[i][0])
|
||||||
|
for j in range(len(files)):
|
||||||
|
general_general_stats.document(files[j]).set({'stats':json_out.get(teams[i][0])})
|
||||||
|
|
||||||
|
for i in range(len(teams)):
|
||||||
|
nnum = location.collection(teams[i][0]).document(u'nishant_number').set({'nishant':score_out.get(teams[i][0])})
|
||||||
|
|
||||||
|
#general_general_stats.collection().document('stats').set()
|
||||||
|
#db.collection(u'stats').document(u'stats-noNN').set(score_out)
|
||||||
|
|
||||||
def pulldata():
|
def pulldata():
|
||||||
#TODO
|
#TODO
|
||||||
@@ -173,3 +238,4 @@ firebase_admin.initialize_app(cred)
|
|||||||
db = firestore.client()
|
db = firestore.client()
|
||||||
|
|
||||||
service() #finally we write something that isn't a function definition
|
service() #finally we write something that isn't a function definition
|
||||||
|
#titanservice()
|
||||||
|
@@ -198,4 +198,4 @@ def retyuoipufdyu():
|
|||||||
model = linear_nn(8, 100, 1, 20, act_fn = "relu")
|
model = linear_nn(8, 100, 1, 20, act_fn = "relu")
|
||||||
print(model)
|
print(model)
|
||||||
return train_sgd_simple(model,"regression", data, ground, learnrate=1e-4, iters=1000)
|
return train_sgd_simple(model,"regression", data, ground, learnrate=1e-4, iters=1000)
|
||||||
retyuoipufdyu()
|
#retyuoipufdyu()
|
||||||
|
Reference in New Issue
Block a user