mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-13 16:45:55 +00:00
analysis.py v 1.1.1.000
This commit is contained in:
parent
91d727b6ad
commit
941dd4838a
@ -7,10 +7,13 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.0.007"
|
__version__ = "1.1.1.000"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.1.000:
|
||||||
|
- added regression_engine()
|
||||||
|
- added all regressions except polynomial
|
||||||
1.1.0.007:
|
1.1.0.007:
|
||||||
- updated _init_device()
|
- updated _init_device()
|
||||||
1.1.0.006:
|
1.1.0.006:
|
||||||
@ -154,6 +157,7 @@ import numba
|
|||||||
from numba import jit
|
from numba import jit
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
import math
|
||||||
|
import regression
|
||||||
from sklearn import metrics
|
from sklearn import metrics
|
||||||
from sklearn import preprocessing
|
from sklearn import preprocessing
|
||||||
import torch
|
import torch
|
||||||
@ -219,7 +223,66 @@ def histo_analysis(hist_data):
|
|||||||
|
|
||||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||||
|
|
||||||
#regressions
|
@jit(forceobj=True)
|
||||||
|
def regression_engine(device, inputs, outputs, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.1, *args):
|
||||||
|
|
||||||
|
regressions = []
|
||||||
|
|
||||||
|
if 'cuda' in device:
|
||||||
|
|
||||||
|
regression.set_device(device)
|
||||||
|
|
||||||
|
if 'linear' in args:
|
||||||
|
|
||||||
|
model = regression.SGDTrain(regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||||
|
|
||||||
|
if 'log' in args:
|
||||||
|
|
||||||
|
model = regression.SGDTrain(regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||||
|
|
||||||
|
if 'exp' in args:
|
||||||
|
|
||||||
|
model = regression.SGDTrain(regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||||
|
|
||||||
|
#if 'poly' in args:
|
||||||
|
|
||||||
|
#TODO because Jacob hasnt fixed regression.py
|
||||||
|
|
||||||
|
if 'sig' in args:
|
||||||
|
|
||||||
|
model = regression.SGDTrain(regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
regression.set_device(device)
|
||||||
|
|
||||||
|
if 'linear' in args:
|
||||||
|
|
||||||
|
model = regression.SGDTrain(regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||||
|
|
||||||
|
if 'log' in args:
|
||||||
|
|
||||||
|
model = regression.SGDTrain(regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||||
|
|
||||||
|
if 'exp' in args:
|
||||||
|
|
||||||
|
model = regression.SGDTrain(regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||||
|
|
||||||
|
#if 'poly' in args:
|
||||||
|
|
||||||
|
#TODO because Jacob hasnt fixed regression.py
|
||||||
|
|
||||||
|
if 'sig' in args:
|
||||||
|
|
||||||
|
model = regression.SGDTrain(regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
regressions.append([model[0].parameter, model[1][::-1][0]])
|
||||||
|
|
||||||
@jit(forceobj=True)
|
@jit(forceobj=True)
|
||||||
def r_squared(predictions, targets): # assumes equal size inputs
|
def r_squared(predictions, targets): # assumes equal size inputs
|
||||||
|
Loading…
Reference in New Issue
Block a user