mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-12 22:26:18 +00:00
analysis.py v 1.1.12.006
analysis pkg v 1.0.0.003
This commit is contained in:
parent
5771c7957e
commit
941383de4b
@ -1,6 +1,6 @@
|
|||||||
Metadata-Version: 2.1
|
Metadata-Version: 2.1
|
||||||
Name: analysis
|
Name: analysis
|
||||||
Version: 1.0.0.2
|
Version: 1.0.0.3
|
||||||
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
Summary: analysis package developed by Titan Scouting for The Red Alliance
|
||||||
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||||
Author: The Titan Scouting Team
|
Author: The Titan Scouting Team
|
||||||
|
@ -7,10 +7,12 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.12.005"
|
__version__ = "1.1.12.006"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.12.006:
|
||||||
|
- fixed bg with a division by zero in histo_analysis
|
||||||
1.1.12.005:
|
1.1.12.005:
|
||||||
- fixed numba issues by removing numba from elo, glicko2 and trueskill
|
- fixed numba issues by removing numba from elo, glicko2 and trueskill
|
||||||
1.1.12.004:
|
1.1.12.004:
|
||||||
@ -323,13 +325,19 @@ def z_normalize(array, *args):
|
|||||||
# expects 2d array of [x,y]
|
# expects 2d array of [x,y]
|
||||||
def histo_analysis(hist_data):
|
def histo_analysis(hist_data):
|
||||||
|
|
||||||
hist_data = np.array(hist_data)
|
if(len(hist_data[0]) > 2):
|
||||||
derivative = np.array(len(hist_data) - 1, dtype = float)
|
|
||||||
t = np.diff(hist_data)
|
|
||||||
derivative = t[1] / t[0]
|
|
||||||
np.sort(derivative)
|
|
||||||
|
|
||||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
hist_data = np.array(hist_data)
|
||||||
|
derivative = np.array(len(hist_data) - 1, dtype = float)
|
||||||
|
t = np.diff(hist_data)
|
||||||
|
derivative = t[1] / t[0]
|
||||||
|
np.sort(derivative)
|
||||||
|
|
||||||
|
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
|
@ -7,10 +7,12 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.12.005"
|
__version__ = "1.1.12.006"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.12.006:
|
||||||
|
- fixed bg with a division by zero in histo_analysis
|
||||||
1.1.12.005:
|
1.1.12.005:
|
||||||
- fixed numba issues by removing numba from elo, glicko2 and trueskill
|
- fixed numba issues by removing numba from elo, glicko2 and trueskill
|
||||||
1.1.12.004:
|
1.1.12.004:
|
||||||
@ -323,13 +325,19 @@ def z_normalize(array, *args):
|
|||||||
# expects 2d array of [x,y]
|
# expects 2d array of [x,y]
|
||||||
def histo_analysis(hist_data):
|
def histo_analysis(hist_data):
|
||||||
|
|
||||||
hist_data = np.array(hist_data)
|
if(len(hist_data[0]) > 2):
|
||||||
derivative = np.array(len(hist_data) - 1, dtype = float)
|
|
||||||
t = np.diff(hist_data)
|
|
||||||
derivative = t[1] / t[0]
|
|
||||||
np.sort(derivative)
|
|
||||||
|
|
||||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
hist_data = np.array(hist_data)
|
||||||
|
derivative = np.array(len(hist_data) - 1, dtype = float)
|
||||||
|
t = np.diff(hist_data)
|
||||||
|
derivative = t[1] / t[0]
|
||||||
|
np.sort(derivative)
|
||||||
|
|
||||||
|
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||||
|
|
||||||
|
else:
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
|
BIN
analysis-master/dist/analysis-1.0.0.3-py3-none-any.whl
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.3-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
analysis-master/dist/analysis-1.0.0.3.tar.gz
vendored
Normal file
BIN
analysis-master/dist/analysis-1.0.0.3.tar.gz
vendored
Normal file
Binary file not shown.
@ -2,7 +2,7 @@ import setuptools
|
|||||||
|
|
||||||
setuptools.setup(
|
setuptools.setup(
|
||||||
name="analysis", # Replace with your own username
|
name="analysis", # Replace with your own username
|
||||||
version="1.0.0.002",
|
version="1.0.0.003",
|
||||||
author="The Titan Scouting Team",
|
author="The Titan Scouting Team",
|
||||||
author_email="titanscout2022@gmail.com",
|
author_email="titanscout2022@gmail.com",
|
||||||
description="analysis package developed by Titan Scouting for The Red Alliance",
|
description="analysis package developed by Titan Scouting for The Red Alliance",
|
||||||
|
Loading…
Reference in New Issue
Block a user