mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
analysis.py v 1.1.5.001
This commit is contained in:
parent
f70e5f573e
commit
886735d9c8
Binary file not shown.
@ -11,6 +11,9 @@ __version__ = "1.1.5.001"
|
|||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.5.002:
|
||||||
|
- reduced import list
|
||||||
|
- added kmeans clustering engine
|
||||||
1.1.5.001:
|
1.1.5.001:
|
||||||
- simplified regression by using .to(device)
|
- simplified regression by using .to(device)
|
||||||
1.1.5.000:
|
1.1.5.000:
|
||||||
@ -194,8 +197,8 @@ try:
|
|||||||
from analysis import trueskill as Trueskill
|
from analysis import trueskill as Trueskill
|
||||||
except:
|
except:
|
||||||
import trueskill as Trueskill
|
import trueskill as Trueskill
|
||||||
from sklearn import metrics
|
import sklearn
|
||||||
from sklearn import preprocessing
|
from sklearn import *
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
class error(ValueError):
|
class error(ValueError):
|
||||||
@ -238,7 +241,7 @@ def z_normalize(array, *args):
|
|||||||
|
|
||||||
array = np.array(array)
|
array = np.array(array)
|
||||||
for arg in args:
|
for arg in args:
|
||||||
array = preprocessing.normalize(array, axis = arg)
|
array = sklearnpreprocessing.normalize(array, axis = arg)
|
||||||
|
|
||||||
return array
|
return array
|
||||||
|
|
||||||
@ -335,17 +338,17 @@ def trueskill(teams_data, observations):#teams_data is array of array of tuples
|
|||||||
@jit(forceobj=True)
|
@jit(forceobj=True)
|
||||||
def r_squared(predictions, targets): # assumes equal size inputs
|
def r_squared(predictions, targets): # assumes equal size inputs
|
||||||
|
|
||||||
return metrics.r2_score(np.array(targets), np.array(predictions))
|
return sklearn.metrics.r2_score(np.array(targets), np.array(predictions))
|
||||||
|
|
||||||
@jit(forceobj=True)
|
@jit(forceobj=True)
|
||||||
def mse(predictions, targets):
|
def mse(predictions, targets):
|
||||||
|
|
||||||
return metrics.mean_squared_error(np.array(targets), np.array(predictions))
|
return sklearn.metrics.mean_squared_error(np.array(targets), np.array(predictions))
|
||||||
|
|
||||||
@jit(forceobj=True)
|
@jit(forceobj=True)
|
||||||
def rms(predictions, targets):
|
def rms(predictions, targets):
|
||||||
|
|
||||||
return math.sqrt(metrics.mean_squared_error(np.array(targets), np.array(predictions)))
|
return math.sqrt(sklearn.metrics.mean_squared_error(np.array(targets), np.array(predictions)))
|
||||||
|
|
||||||
@jit(nopython=True)
|
@jit(nopython=True)
|
||||||
def mean(data):
|
def mean(data):
|
||||||
@ -367,6 +370,14 @@ def variance(data):
|
|||||||
|
|
||||||
return np.var(data)
|
return np.var(data)
|
||||||
|
|
||||||
|
def kmeans(data, kernel=sklearn.cluster.KMeans()):
|
||||||
|
|
||||||
|
kernel.fit(data)
|
||||||
|
predictions = kernel.predict(data)
|
||||||
|
centers = kernel.cluster_centers_
|
||||||
|
|
||||||
|
return centers, predictions
|
||||||
|
|
||||||
class Regression:
|
class Regression:
|
||||||
|
|
||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
|
Loading…
Reference in New Issue
Block a user