mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-13 16:45:55 +00:00
analysis.py v 1.1.7.000
This commit is contained in:
parent
efab5bfde8
commit
7c957d9ddc
@ -7,10 +7,13 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.6.002"
|
__version__ = "1.1.7.000"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.7.000:
|
||||||
|
- added knn()
|
||||||
|
- added confusion matrix to decisiontree()
|
||||||
1.1.6.002:
|
1.1.6.002:
|
||||||
- changed layout of __changelog to be vscode friendly
|
- changed layout of __changelog to be vscode friendly
|
||||||
1.1.6.001:
|
1.1.6.001:
|
||||||
@ -395,14 +398,27 @@ def pca(data, kernel = sklearn.decomposition.PCA(n_components=2)):
|
|||||||
|
|
||||||
return kernel.fit_transform(data)
|
return kernel.fit_transform(data)
|
||||||
|
|
||||||
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects 2d data and 1d labels
|
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
||||||
|
|
||||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||||
model = model.fit(data_train,labels_train)
|
model = model.fit(data_train,labels_train)
|
||||||
predictions = model.predict(data_test)
|
predictions = model.predict(data_test)
|
||||||
|
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||||
accuracy = sklearn.metrics.accuracy_score(labels_test, predictions)
|
accuracy = sklearn.metrics.accuracy_score(labels_test, predictions)
|
||||||
return model, accuracy
|
|
||||||
|
return model, cm, accuracy
|
||||||
|
|
||||||
|
def knn(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.neighbors.KNeighborsClassifier()
|
||||||
|
model.fit(data_train, labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
cm = sklearn.metrics.confusion_matrix(labels_test, predictions)
|
||||||
|
cr = sklearn.metrics.classification_report(labels_test, predictions)
|
||||||
|
|
||||||
|
return model, cm, cr
|
||||||
|
|
||||||
class Regression:
|
class Regression:
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user