analysis pkg v 1.0.0.11

analysis.py v 1.1.13.009
superscript.py v 0.0.5.002
This commit is contained in:
ltcptgeneral 2020-04-12 02:51:40 +00:00
parent d635fed0ae
commit 7838a2e905
11 changed files with 79 additions and 67 deletions

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1
Name: analysis
Version: 1.0.0.10
Version: 1.0.0.11
Summary: analysis package developed by Titan Scouting for The Red Alliance
Home-page: https://github.com/titanscout2022/tr2022-strategy
Author: The Titan Scouting Team

View File

@ -7,10 +7,12 @@
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "1.1.13.008"
__version__ = "1.1.13.009"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.13.009:
- moved elo, glicko2, trueskill functions under class Metrics
1.1.13.008:
- moved Glicko2 to a seperate package
1.1.13.007:
@ -446,6 +448,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
return regressions
class Metrics:
def elo(starting_score, opposing_score, observed, N, K):
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
@ -563,7 +567,8 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
return model, metrics
@jit(forceobj=True)
class KNN:
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)

View File

@ -7,10 +7,12 @@
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "1.1.13.008"
__version__ = "1.1.13.009"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.13.009:
- moved elo, glicko2, trueskill functions under class Metrics
1.1.13.008:
- moved Glicko2 to a seperate package
1.1.13.007:
@ -446,6 +448,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
return regressions
class Metrics:
def elo(starting_score, opposing_score, observed, N, K):
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
@ -563,7 +567,8 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
return model, metrics
@jit(forceobj=True)
class KNN:
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)

Binary file not shown.

View File

@ -8,7 +8,7 @@ with open("requirements.txt", 'r') as file:
setuptools.setup(
name="analysis",
version="1.0.0.010",
version="1.0.0.011",
author="The Titan Scouting Team",
author_email="titanscout2022@gmail.com",
description="analysis package developed by Titan Scouting for The Red Alliance",

View File

@ -3,10 +3,12 @@
# Notes:
# setup:
__version__ = "0.0.5.001"
__version__ = "0.0.5.002"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
0.0.5.002:
- made changes due to refactoring of analysis
0.0.5.001:
- text fixes
- removed matplotlib requirement
@ -286,11 +288,11 @@ def metricsloop(tbakey, apikey, competition, timestamp): # listener based metric
observations = {"red": 0.5, "blu": 0.5}
red_elo_delta = an.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
red_elo_delta = an.Metrics.elo(red_elo["score"], blu_elo["score"], observations["red"], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.Metrics.elo(blu_elo["score"], red_elo["score"], observations["blu"], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.Metrics.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blu"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.Metrics.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blu"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}