mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-09 22:44:44 +00:00
Initial commit
This commit is contained in:
commit
75be44f518
2
.gitattributes
vendored
Normal file
2
.gitattributes
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
# Auto detect text files and perform LF normalization
|
||||
* text=auto
|
BIN
__pycache__/analysis.cpython-37.pyc
Normal file
BIN
__pycache__/analysis.cpython-37.pyc
Normal file
Binary file not shown.
BIN
__pycache__/generate_data.cpython-37.pyc
Normal file
BIN
__pycache__/generate_data.cpython-37.pyc
Normal file
Binary file not shown.
673
analysis.py
Normal file
673
analysis.py
Normal file
@ -0,0 +1,673 @@
|
||||
<<<<<<< HEAD
|
||||
#this should be imported as a python module using 'import analysis'
|
||||
|
||||
import statistics
|
||||
import math
|
||||
import csv
|
||||
import functools
|
||||
|
||||
class c_entities:
|
||||
|
||||
c_names = []
|
||||
c_ids = []
|
||||
c_pos = []
|
||||
c_porperties = []
|
||||
c_logic = []
|
||||
|
||||
class nc_entities:
|
||||
|
||||
c_names = []
|
||||
c_ids = []
|
||||
c_pos = []
|
||||
c_properties = []
|
||||
c_effects = []
|
||||
|
||||
def debug(self):
|
||||
print ("nc_entities (non-controlable entities) has attributes names, ids, positions, properties, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of psoitions, 2d array of properties, and 2d array of effects.")
|
||||
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
|
||||
|
||||
def __init__(self, names, ids, pos, properties, effects):
|
||||
self.c_names = names
|
||||
self.c_ids = ids
|
||||
self.c_pos = pos
|
||||
self.c_properties = properties
|
||||
self.c_effects = effects
|
||||
return None
|
||||
|
||||
def append(self, n_name, n_id, n_pos, n_property, n_effect):
|
||||
self.c_names.append(n_name)
|
||||
self.c_ids.append(n_id)
|
||||
self.c_pos.append(n_pos)
|
||||
self.c_properties.append(n_property)
|
||||
self.c_effects.append(n_effect)
|
||||
|
||||
def edit(self, search, n_name, n_id, n_pos, n_property, n_effect):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
if n_name != "null":
|
||||
self.c_names[position] = n_name
|
||||
|
||||
if n_id != "null":
|
||||
self.c_ids[position] = n_id
|
||||
|
||||
if n_pos != "null":
|
||||
self.c_pos[position] = n_pos
|
||||
|
||||
if n_property != "null":
|
||||
self.c_properties[position] = n_property
|
||||
|
||||
if n_effect != "null":
|
||||
self.c_effects[position] = n_effect
|
||||
|
||||
return None
|
||||
|
||||
def search(self, search):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_properties[position], self.c_effects[position]]
|
||||
|
||||
class obstacles:
|
||||
|
||||
c_names = []
|
||||
c_ids = []
|
||||
c_perim = []
|
||||
c_effects = []
|
||||
|
||||
def debug(self):
|
||||
print("obstacles has atributes names, ids, positions, perimeters, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of position, 3d array of perimeters, 2d array of effects.")
|
||||
return [self.c_names, self.c_ids, self.c_perim, self.c_effects]
|
||||
|
||||
def __init__(self, names, ids, perims, effects):
|
||||
self.c_names = names
|
||||
self.c_ids = ids
|
||||
self.c_perim = perims
|
||||
self.c_effects = effects
|
||||
return None
|
||||
|
||||
def append(self, n_name, n_id, n_perim, n_effect):
|
||||
self.c_names.append(n_name)
|
||||
self.c_ids.append(n_id)
|
||||
self.c_perim.append(n_perim)
|
||||
self.c_effects.append(n_effect)
|
||||
return None
|
||||
|
||||
def edit(self, search, n_name, n_id, n_perim, n_effect):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
if n_name != "null":
|
||||
self.c_names[position] = n_name
|
||||
|
||||
if n_id != "null":
|
||||
self.c_ids[position] = n_id
|
||||
|
||||
if n_perim != "null":
|
||||
self.c_perim[position] = n_perim
|
||||
|
||||
if n_effect != "null":
|
||||
self.c_effects[position] = n_effect
|
||||
|
||||
return None
|
||||
|
||||
def search(self, search):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
return [self.c_names[position], self.c_ids[position], self.c_perim[position], self.c_effects[position]]
|
||||
|
||||
class objectives:
|
||||
|
||||
c_names = []
|
||||
c_ids = []
|
||||
c_pos = []
|
||||
c_effects = []
|
||||
|
||||
def debug(self):
|
||||
print("objectives has atributes names, ids, positions, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of position, 1d array of effects.")
|
||||
return [self.c_names, self.c_ids, self.c_pos, self.c_effects]
|
||||
|
||||
def __init__(self, names, ids, pos, effects):
|
||||
self.c_names = names
|
||||
self.c_ids = ids
|
||||
self.c_pos = pos
|
||||
self.c_effects = effects
|
||||
return None
|
||||
|
||||
def append(self, n_name, n_id, n_pos, n_effect):
|
||||
self.c_names.append(n_name)
|
||||
self.c_ids.append(n_id)
|
||||
self.c_pos.append(n_pos)
|
||||
self.c_effects.append(n_effect)
|
||||
return None
|
||||
|
||||
def edit(self, search, n_name, n_id, n_pos, n_effect):
|
||||
position = 0
|
||||
print(self.c_ids)
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
if n_name != "null":
|
||||
self.c_names[position] = n_name
|
||||
|
||||
if n_id != "null":
|
||||
self.c_ids[position] = n_id
|
||||
|
||||
if n_pos != "null":
|
||||
self.c_pos[position] = n_pos
|
||||
|
||||
if n_effect != "null":
|
||||
self.c_effects[position] = n_effect
|
||||
|
||||
return None
|
||||
|
||||
def search(self, search):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_effects[position]]
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline = '') as csvfile:
|
||||
file_array = list(csv.reader(csvfile))
|
||||
return file_array
|
||||
|
||||
def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||
|
||||
if mode == 'debug':
|
||||
out = "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]"
|
||||
return out
|
||||
|
||||
if mode == "1d" or mode == 0:
|
||||
|
||||
data_t = []
|
||||
|
||||
for i in range (0, len(data) - 1, 1):
|
||||
|
||||
data_t.append(float(data[i]))
|
||||
|
||||
mean = statistics.mean(data_t)
|
||||
median = statistics.median(data_t)
|
||||
try:
|
||||
mode = statistics.mode(data_t)
|
||||
except:
|
||||
mode = None
|
||||
stdev = statistics.stdev(data_t)
|
||||
variance = statistics.variance(data_t)
|
||||
|
||||
out = [mean, median, mode, stdev, variance]
|
||||
|
||||
return out
|
||||
|
||||
elif mode == "column" or mode == 1:
|
||||
|
||||
c_data = []
|
||||
c_data_sorted = []
|
||||
|
||||
for i in data:
|
||||
c_data.append(float(i[arg]))
|
||||
|
||||
mean = statistics.mean(c_data)
|
||||
median = statistics.median(c_data)
|
||||
try:
|
||||
mode = statistics.mode(c_data)
|
||||
except:
|
||||
mode = None
|
||||
stdev = statistics.stdev(c_data)
|
||||
variance = statistics.variance(c_data)
|
||||
|
||||
out = [mean, median, mode, stdev, variance]
|
||||
|
||||
return out
|
||||
|
||||
elif mode == "row" or mode == 2:
|
||||
|
||||
r_data = []
|
||||
|
||||
for i in range(len(data[arg])):
|
||||
r_data.append(float(data[arg][i]))
|
||||
|
||||
mean = statistics.mean(r_data)
|
||||
median = statistics.median(r_data)
|
||||
try:
|
||||
mode = statistics.mode(r_data)
|
||||
except:
|
||||
mode = None
|
||||
stdev = statistics.stdev(r_data)
|
||||
variance = statistics.variance(r_data)
|
||||
|
||||
out = [mean, median, mode, stdev, variance]
|
||||
|
||||
return out
|
||||
else:
|
||||
return ["mode_error", "mode_error"]
|
||||
|
||||
def z_score(point, mean, stdev):
|
||||
score = (point - mean)/stdev
|
||||
return score
|
||||
|
||||
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
|
||||
|
||||
z_split = []
|
||||
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
|
||||
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
|
||||
|
||||
i = i + delta
|
||||
|
||||
if i > high_bound:
|
||||
|
||||
break
|
||||
|
||||
return z_split
|
||||
|
||||
def histo_analysis(hist_data): #note: depreciated
|
||||
|
||||
if hist_data == 'debug':
|
||||
return['lower estimate (5%)', 'lower middle estimate (25%)', 'middle estimate (50%)', 'higher middle estimate (75%)', 'high estimate (95%)', 'standard deviation', 'note: this has been depreciated']
|
||||
|
||||
derivative = []
|
||||
for i in range(0, len(hist_data) - 1, 1):
|
||||
derivative.append(float(hist_data[i+1]) - float(hist_data[i]))
|
||||
|
||||
derivative_sorted = sorted(derivative, key=int)
|
||||
mean_derivative = basic_stats(derivative_sorted, "1d", 0)[0]
|
||||
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
|
||||
|
||||
low_bound = mean_derivative + -1.645 * stdev_derivative
|
||||
lm_bound = mean_derivative + -0.674 * stdev_derivative
|
||||
mid_bound = mean_derivative * 0 * stdev_derivative
|
||||
hm_bound = mean_derivative + 0.674 * stdev_derivative
|
||||
high_bound = mean_derivative + 1.645 * stdev_derivative
|
||||
|
||||
low_est = float(hist_data[-1:][0]) + low_bound
|
||||
lm_est = float(hist_data[-1:][0]) + lm_bound
|
||||
mid_est = float(hist_data[-1:][0]) + mid_bound
|
||||
hm_est = float(hist_data[-1:][0]) + hm_bound
|
||||
high_est = float(hist_data[-1:][0]) + high_bound
|
||||
|
||||
return [low_est, lm_est, mid_est, hm_est, high_est, stdev_derivative]
|
||||
|
||||
def histo_analysis_2(hist_data, delta, low_bound, high_bound):
|
||||
|
||||
if hist_data == 'debug':
|
||||
return ('returns list of predicted values based on historical data; input delta for delta step in z-score and lower and igher bounds in number for standard deviations')
|
||||
|
||||
derivative = []
|
||||
|
||||
for i in range(0, len(hist_data) - 1, 1):
|
||||
derivative.append(float(hist_data[i + 1]) - float(hist_data [i]))
|
||||
|
||||
derivative_sorted = sorted(derivative, key=int)
|
||||
mean_derivative = basic_stats(derivative_sorted,"1d", 0)[0]
|
||||
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
|
||||
|
||||
predictions = []
|
||||
pred_change = 0
|
||||
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
|
||||
pred_change = mean_derivative + i * stdev_derivative
|
||||
|
||||
predictions.append(float(hist_data[-1:][0]) + pred_change)
|
||||
|
||||
i = i + delta
|
||||
|
||||
if i > high_bound:
|
||||
|
||||
break
|
||||
|
||||
return predictions
|
||||
=======
|
||||
#this should be imported as a python module using 'import analysis'
|
||||
|
||||
import statistics
|
||||
import math
|
||||
import csv
|
||||
import functools
|
||||
|
||||
class c_entities:
|
||||
|
||||
c_names = []
|
||||
c_ids = []
|
||||
c_pos = []
|
||||
c_porperties = []
|
||||
c_logic = []
|
||||
|
||||
class nc_entities:
|
||||
|
||||
c_names = []
|
||||
c_ids = []
|
||||
c_pos = []
|
||||
c_properties = []
|
||||
c_effects = []
|
||||
|
||||
def debug(self):
|
||||
print ("nc_entities (non-controlable entities) has attributes names, ids, positions, properties, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of psoitions, 2d array of properties, and 2d array of effects.")
|
||||
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
|
||||
|
||||
def __init__(self, names, ids, pos, properties, effects):
|
||||
self.c_names = names
|
||||
self.c_ids = ids
|
||||
self.c_pos = pos
|
||||
self.c_properties = properties
|
||||
self.c_effects = effects
|
||||
return None
|
||||
|
||||
def append(self, n_name, n_id, n_pos, n_property, n_effect):
|
||||
self.c_names.append(n_name)
|
||||
self.c_ids.append(n_id)
|
||||
self.c_pos.append(n_pos)
|
||||
self.c_properties.append(n_property)
|
||||
self.c_effects.append(n_effect)
|
||||
|
||||
def edit(self, search, n_name, n_id, n_pos, n_property, n_effect):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
if n_name != "null":
|
||||
self.c_names[position] = n_name
|
||||
|
||||
if n_id != "null":
|
||||
self.c_ids[position] = n_id
|
||||
|
||||
if n_pos != "null":
|
||||
self.c_pos[position] = n_pos
|
||||
|
||||
if n_property != "null":
|
||||
self.c_properties[position] = n_property
|
||||
|
||||
if n_effect != "null":
|
||||
self.c_effects[position] = n_effect
|
||||
|
||||
return None
|
||||
|
||||
def search(self, search):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_properties[position], self.c_effects[position]]
|
||||
|
||||
class obstacles:
|
||||
|
||||
c_names = []
|
||||
c_ids = []
|
||||
c_perim = []
|
||||
c_effects = []
|
||||
|
||||
def debug(self):
|
||||
print("obstacles has atributes names, ids, positions, perimeters, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of position, 3d array of perimeters, 2d array of effects.")
|
||||
return [self.c_names, self.c_ids, self.c_perim, self.c_effects]
|
||||
|
||||
def __init__(self, names, ids, perims, effects):
|
||||
self.c_names = names
|
||||
self.c_ids = ids
|
||||
self.c_perim = perims
|
||||
self.c_effects = effects
|
||||
return None
|
||||
|
||||
def append(self, n_name, n_id, n_perim, n_effect):
|
||||
self.c_names.append(n_name)
|
||||
self.c_ids.append(n_id)
|
||||
self.c_perim.append(n_perim)
|
||||
self.c_effects.append(n_effect)
|
||||
return None
|
||||
|
||||
def edit(self, search, n_name, n_id, n_perim, n_effect):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
if n_name != "null":
|
||||
self.c_names[position] = n_name
|
||||
|
||||
if n_id != "null":
|
||||
self.c_ids[position] = n_id
|
||||
|
||||
if n_perim != "null":
|
||||
self.c_perim[position] = n_perim
|
||||
|
||||
if n_effect != "null":
|
||||
self.c_effects[position] = n_effect
|
||||
|
||||
return None
|
||||
|
||||
def search(self, search):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
return [self.c_names[position], self.c_ids[position], self.c_perim[position], self.c_effects[position]]
|
||||
|
||||
class objectives:
|
||||
|
||||
c_names = []
|
||||
c_ids = []
|
||||
c_pos = []
|
||||
c_effects = []
|
||||
|
||||
def debug(self):
|
||||
print("objectives has atributes names, ids, positions, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of position, 1d array of effects.")
|
||||
return [self.c_names, self.c_ids, self.c_pos, self.c_effects]
|
||||
|
||||
def __init__(self, names, ids, pos, effects):
|
||||
self.c_names = names
|
||||
self.c_ids = ids
|
||||
self.c_pos = pos
|
||||
self.c_effects = effects
|
||||
return None
|
||||
|
||||
def append(self, n_name, n_id, n_pos, n_effect):
|
||||
self.c_names.append(n_name)
|
||||
self.c_ids.append(n_id)
|
||||
self.c_pos.append(n_pos)
|
||||
self.c_effects.append(n_effect)
|
||||
return None
|
||||
|
||||
def edit(self, search, n_name, n_id, n_pos, n_effect):
|
||||
position = 0
|
||||
print(self.c_ids)
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
if n_name != "null":
|
||||
self.c_names[position] = n_name
|
||||
|
||||
if n_id != "null":
|
||||
self.c_ids[position] = n_id
|
||||
|
||||
if n_pos != "null":
|
||||
self.c_pos[position] = n_pos
|
||||
|
||||
if n_effect != "null":
|
||||
self.c_effects[position] = n_effect
|
||||
|
||||
return None
|
||||
|
||||
def search(self, search):
|
||||
position = 0
|
||||
for i in range(0, len(self.c_ids), 1):
|
||||
if self.c_ids[i] == search:
|
||||
position = i
|
||||
|
||||
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_effects[position]]
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline = '') as csvfile:
|
||||
file_array = list(csv.reader(csvfile))
|
||||
return file_array
|
||||
|
||||
def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||
|
||||
if mode == 'debug':
|
||||
out = "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]"
|
||||
return out
|
||||
|
||||
if mode == "1d" or mode == 0:
|
||||
|
||||
data_t = []
|
||||
|
||||
for i in range (0, len(data) - 1, 1):
|
||||
|
||||
data_t.append(float(data[i]))
|
||||
|
||||
mean = statistics.mean(data_t)
|
||||
median = statistics.median(data_t)
|
||||
try:
|
||||
mode = statistics.mode(data_t)
|
||||
except:
|
||||
mode = None
|
||||
stdev = statistics.stdev(data_t)
|
||||
variance = statistics.variance(data_t)
|
||||
|
||||
out = [mean, median, mode, stdev, variance]
|
||||
|
||||
return out
|
||||
|
||||
elif mode == "column" or mode == 1:
|
||||
|
||||
c_data = []
|
||||
c_data_sorted = []
|
||||
|
||||
for i in data:
|
||||
c_data.append(float(i[arg]))
|
||||
|
||||
mean = statistics.mean(c_data)
|
||||
median = statistics.median(c_data)
|
||||
try:
|
||||
mode = statistics.mode(c_data)
|
||||
except:
|
||||
mode = None
|
||||
stdev = statistics.stdev(c_data)
|
||||
variance = statistics.variance(c_data)
|
||||
|
||||
out = [mean, median, mode, stdev, variance]
|
||||
|
||||
return out
|
||||
|
||||
elif mode == "row" or mode == 2:
|
||||
|
||||
r_data = []
|
||||
|
||||
for i in range(len(data[arg])):
|
||||
r_data.append(float(data[arg][i]))
|
||||
|
||||
mean = statistics.mean(r_data)
|
||||
median = statistics.median(r_data)
|
||||
try:
|
||||
mode = statistics.mode(r_data)
|
||||
except:
|
||||
mode = None
|
||||
stdev = statistics.stdev(r_data)
|
||||
variance = statistics.variance(r_data)
|
||||
|
||||
out = [mean, median, mode, stdev, variance]
|
||||
|
||||
return out
|
||||
else:
|
||||
return ["mode_error", "mode_error"]
|
||||
|
||||
def z_score(point, mean, stdev):
|
||||
score = (point - mean)/stdev
|
||||
return score
|
||||
|
||||
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
|
||||
|
||||
z_split = []
|
||||
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
|
||||
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
|
||||
|
||||
i = i + delta
|
||||
|
||||
if i > high_bound:
|
||||
|
||||
break
|
||||
|
||||
return z_split
|
||||
|
||||
def histo_analysis(hist_data): #note: depreciated
|
||||
|
||||
if hist_data == 'debug':
|
||||
return['lower estimate (5%)', 'lower middle estimate (25%)', 'middle estimate (50%)', 'higher middle estimate (75%)', 'high estimate (95%)', 'standard deviation', 'note: this has been depreciated']
|
||||
|
||||
derivative = []
|
||||
for i in range(0, len(hist_data) - 1, 1):
|
||||
derivative.append(float(hist_data[i+1]) - float(hist_data[i]))
|
||||
|
||||
derivative_sorted = sorted(derivative, key=int)
|
||||
mean_derivative = basic_stats(derivative_sorted, "1d", 0)[0]
|
||||
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
|
||||
|
||||
low_bound = mean_derivative + -1.645 * stdev_derivative
|
||||
lm_bound = mean_derivative + -0.674 * stdev_derivative
|
||||
mid_bound = mean_derivative * 0 * stdev_derivative
|
||||
hm_bound = mean_derivative + 0.674 * stdev_derivative
|
||||
high_bound = mean_derivative + 1.645 * stdev_derivative
|
||||
|
||||
low_est = float(hist_data[-1:][0]) + low_bound
|
||||
lm_est = float(hist_data[-1:][0]) + lm_bound
|
||||
mid_est = float(hist_data[-1:][0]) + mid_bound
|
||||
hm_est = float(hist_data[-1:][0]) + hm_bound
|
||||
high_est = float(hist_data[-1:][0]) + high_bound
|
||||
|
||||
return [low_est, lm_est, mid_est, hm_est, high_est, stdev_derivative]
|
||||
|
||||
def histo_analysis_2(hist_data, delta, low_bound, high_bound):
|
||||
|
||||
if hist_data == 'debug':
|
||||
return ('returns list of predicted values based on historical data; input delta for delta step in z-score and lower and igher bounds in number for standard deviations')
|
||||
|
||||
derivative = []
|
||||
|
||||
for i in range(0, len(hist_data) - 1, 1):
|
||||
derivative.append(float(hist_data[i + 1]) - float(hist_data [i]))
|
||||
|
||||
derivative_sorted = sorted(derivative, key=int)
|
||||
mean_derivative = basic_stats(derivative_sorted,"1d", 0)[0]
|
||||
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
|
||||
|
||||
predictions = []
|
||||
pred_change = 0
|
||||
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
|
||||
pred_change = mean_derivative + i * stdev_derivative
|
||||
|
||||
predictions.append(float(hist_data[-1:][0]) + pred_change)
|
||||
|
||||
i = i + delta
|
||||
|
||||
if i > high_bound:
|
||||
|
||||
break
|
||||
|
||||
return predictions
|
||||
>>>>>>> 18189b45b17228228e192c270c12c3cc2cb7f8cf
|
43
analysis_test.py
Normal file
43
analysis_test.py
Normal file
@ -0,0 +1,43 @@
|
||||
<<<<<<< HEAD
|
||||
import analysis
|
||||
|
||||
data = analysis.load_csv('data.txt')
|
||||
print(analysis.basic_stats(0, 'debug', 0))
|
||||
print(analysis.basic_stats(data, "column", 0))
|
||||
print(analysis.basic_stats(data, "row", 0))
|
||||
print(analysis.z_score(10, analysis.basic_stats(data, "column", 0)[0],analysis.basic_stats(data, "column", 0)[3]))
|
||||
print(analysis.histo_analysis(data[0]))
|
||||
print(analysis.histo_analysis_2(data[0], 0.01, -1, 1))
|
||||
print(analysis.stdev_z_split(3.3, 0.2, 0.1, -5, 5))
|
||||
|
||||
game_nc_entities = analysis.nc_entities(["cube", "cube", "ball"], [0, 1, 2], [[0, 0.5], [1, 1.5], [2, 2]], ["1;1;1;10', '2;1;1;20", "r=0.5, 5"], ["1", "1", "0"])
|
||||
game_nc_entities.append("cone", 3, [1, -1], "property", "effect")
|
||||
game_nc_entities.edit(2, "sphere", 10, [5, -5], "new prop", "new effect")
|
||||
print(game_nc_entities.search(10))
|
||||
print(game_nc_entities.debug())
|
||||
|
||||
game_obstacles = analysis.obstacles(["wall", "fortress", "castle"], [0, 1, 2],[[[10, 10], [10, 9], [9, 10], [9, 9]], [[-10, 9], [-10, -9], [-9, -10]], [[5, 0], [4, -1], [-4, -1]]] , [0, 0.01, 10])
|
||||
game_obstacles.append("bastion", 3, [[50, 50], [49, 50], [50, 49], [49, 49]], 75)
|
||||
game_obstacles.edit(0, "motte and bailey", "null", [[10, 10], [9, 10], [10, 9], [9, 9]], 0.01)
|
||||
print(game_obstacles.search(0))
|
||||
print(game_obstacles.debug())
|
||||
|
||||
game_objectives = analysis.objectives(["switch", "scale", "climb"], [0,1,2], [[0,0],[1,1],[2,0]], ["0,1", "1,1", "0,5"])
|
||||
game_objectives.append("auto", 3, [0, 10], "1, 10")
|
||||
game_objectives.edit(3, "null", 4, "null", "null")
|
||||
print(game_objectives.search(4))
|
||||
print(game_objectives.debug())
|
||||
=======
|
||||
import analysis
|
||||
|
||||
data = analysis.load_csv('data.txt')
|
||||
print(analysis.basic_stats(0, 'debug', 0))
|
||||
print(analysis.basic_stats(data, 1, 0))
|
||||
print(analysis.basic_stats(data, 2, 0))
|
||||
print(analysis.z_score(10, analysis.basic_stats(data, 1, 0)[0],analysis.basic_stats(data, 1, 0)[3]))
|
||||
print(analysis.histo_analysis(data[0]))
|
||||
print(analysis.histo_analysis_2(data[0], 0.01, -1, 1))
|
||||
print(analysis.stdev_z_split(3.3, 0.2, 0.1, -5, 5))
|
||||
|
||||
x = analysis.objectives(["switch", "scale", "climb"], [0,1,2], [[0,0],[1,1],[2,0]], ["0,1", "1,1", "0,5"])
|
||||
>>>>>>> 18189b45b17228228e192c270c12c3cc2cb7f8cf
|
16
generate_data.py
Normal file
16
generate_data.py
Normal file
@ -0,0 +1,16 @@
|
||||
import random
|
||||
|
||||
def generate(filename, x, y, low, high):
|
||||
|
||||
file = open(filename, "w")
|
||||
|
||||
for i in range (0, y - 1, 1):
|
||||
|
||||
temp = ""
|
||||
|
||||
for j in range (0, x - 1, 1):
|
||||
|
||||
temp = str(random.uniform(low, high)) + "," + temp
|
||||
|
||||
temp = temp + str(random.uniform(low, high))
|
||||
file.write(temp + "\n")
|
28
repack_json.py
Normal file
28
repack_json.py
Normal file
@ -0,0 +1,28 @@
|
||||
import os
|
||||
import json
|
||||
import ordereddict
|
||||
import collections
|
||||
import unicodecsv
|
||||
|
||||
content = open("realtimeDatabaseExport2018.json").read()
|
||||
|
||||
dict_content = json.loads(content)
|
||||
list_of_new_data = []
|
||||
|
||||
for datak, datav in dict_content.iteritems():
|
||||
for teamk, teamv in datav["teams"].iteritems():
|
||||
for matchk, matchv in teamv.iteritems():
|
||||
for detailk, detailv in matchv.iteritems():
|
||||
new_data = collections.OrderedDict(detailv)
|
||||
new_data["uuid"] = detailk
|
||||
new_data["match"] = matchk
|
||||
new_data["team"] = teamk
|
||||
|
||||
list_of_new_data.append(new_data)
|
||||
|
||||
allkey = reduce(lambda x, y: x.union(y.keys()), list_of_new_data, set())
|
||||
output_file = open('realtimeDatabaseExport2018.csv', 'wb')
|
||||
dict_writer = unicodecsv.DictWriter(csvfile=output_file, fieldnames=allkey)
|
||||
dict_writer.writerow(dict((fn,fn) for fn in dict_writer.fieldnames))
|
||||
dict_writer.writerows(list_of_new_data)
|
||||
output_file.close()
|
Loading…
Reference in New Issue
Block a user