Merge pull request #84 from titanscouting/typehinting-docstrings

Grab docstrings for Analysis to analysis-v4
This commit is contained in:
Arthur Lu 2021-11-18 01:30:51 -08:00 committed by GitHub
commit 6fb0eefbc0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 143 additions and 54 deletions

View File

@ -7,10 +7,15 @@
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "3.0.4"
__version__ = "3.0.6"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
3.0.6:
- added docstrings
3.0.5:
- removed extra submodule imports
- fixed/optimized header
3.0.4:
- removed -_obj imports
3.0.3:
@ -361,7 +366,6 @@ __all__ = [
'histo_analysis',
'regression',
'Metric',
'kmeans',
'pca',
'decisiontree',
# all statistics functions left out due to integration in other functions
@ -374,34 +378,39 @@ __all__ = [
import csv
from tra_analysis.metrics import elo as Elo
from tra_analysis.metrics import glicko2 as Glicko2
import math
import numpy as np
import scipy
from scipy import optimize, stats
import sklearn
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
import sklearn, sklearn.cluster
from tra_analysis.metrics import trueskill as Trueskill
import warnings
# import submodules
from .Array import Array
from .ClassificationMetric import ClassificationMetric
from .RegressionMetric import RegressionMetric
from . import SVM
class error(ValueError):
pass
def load_csv(filepath):
"""
Loads csv file into 2D numpy array. Does not check csv file validity.
parameters:
filepath: String path to the csv file
return:
2D numpy array of values stored in csv file
"""
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
csvfile.close()
return file_array
# expects 1d array
def basic_stats(data):
"""
Calculates mean, median, standard deviation, variance, minimum, maximum of a simple set of elements.
parameters:
data: List representing set of unordered elements
return:
Dictionary with (mean, median, standard-deviation, variance, minimum, maximum) as keys and corresponding values
"""
data_t = np.array(data).astype(float)
_mean = mean(data_t)
@ -413,24 +422,43 @@ def basic_stats(data):
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
# returns z score with inputs of point, mean and standard deviation of spread
def z_score(point, mean, stdev):
"""
Calculates z score of a specific point given mean and standard deviation of data.
parameters:
point: Real value corresponding to a single point of data
mean: Real value corresponding to the mean of the dataset
stdev: Real value corresponding to the standard deviation of the dataset
return:
Real value that is the point's z score
"""
score = (point - mean) / stdev
return score
# expects 2d array, normalizes across all axes
def z_normalize(array, *args):
"""
Applies sklearn.normalize(array, axis = args) on any arraylike parseable by numpy.
parameters:
array: array like structure of reals aka nested indexables
*args: arguments relating to axis normalized against
return:
numpy array of normalized values from ArrayLike input
"""
array = np.array(array)
for arg in args:
array = sklearn.preprocessing.normalize(array, axis = arg)
return array
# expects 2d array of [x,y]
def histo_analysis(hist_data):
"""
Calculates the mean and standard deviation of derivatives of (x,y) points. Requires at least 2 points to compute.
parameters:
hist_data: list of real coordinate point data (x, y)
return:
Dictionary with (mean, deviation) as keys to corresponding values
"""
if len(hist_data[0]) > 2:
hist_data = np.array(hist_data)
@ -446,7 +474,15 @@ def histo_analysis(hist_data):
return None
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
"""
Applies specified regression kernels onto input, output data pairs.
parameters:
inputs: List of Reals representing independent variable values of each point
outputs: List of Reals representing dependent variable values of each point
args: List of Strings from values (lin, log, exp, ply, sig)
return:
Dictionary with keys (lin, log, exp, ply, sig) as keys to correspondiong regression models
"""
X = np.array(inputs)
y = np.array(outputs)
@ -550,13 +586,39 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
return regressions
class Metric:
"""
The metric class wraps the metrics models. Call without instantiation as Metric.<method>(...)
"""
def elo(self, starting_score, opposing_score, observed, N, K):
"""
Calculates an elo adjusted ELO score given a player's current score, opponent's score, and outcome of match.
reference: https://en.wikipedia.org/wiki/Elo_rating_system
parameters:
starting_score: Real value representing player's ELO score before a match
opposing_score: Real value representing opponent's score before the match
observed: Array of Real values representing multiple sequential match outcomes against the same opponent. 1 for match win, 0.5 for tie, 0 for loss.
N: Real value representing the normal or mean score expected (usually 1200)
K: R eal value representing a system constant, determines how quickly players will change scores (usually 24)
return:
Real value representing the player's new ELO score
"""
return Elo.calculate(starting_score, opposing_score, observed, N, K)
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
"""
Calculates an adjusted Glicko-2 score given a player's current score, multiple opponent's score, and outcome of several matches.
reference: http://www.glicko.net/glicko/glicko2.pdf
parameters:
starting_score: Real value representing the player's Glicko-2 score
starting_rd: Real value representing the player's RD
starting_vol: Real value representing the player's volatility
opposing_score: List of Real values representing multiple opponent's Glicko-2 scores
opposing_rd: List of Real values representing multiple opponent's RD
opposing_vol: List of Real values representing multiple opponent's volatility
observations: List of Real values representing the outcome of several matches, where each match's opponent corresponds with the opposing_score, opposing_rd, opposing_vol values of the same indesx. Outcomes can be a score, presuming greater score is better.
return:
Tuple of 3 Real values representing the player's new score, rd, and vol
"""
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
@ -564,7 +626,15 @@ class Metric:
return (player.rating, player.rd, player.vol)
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
"""
Calculates the score changes for multiple teams playing in a single match accoding to the trueskill algorithm.
reference: https://trueskill.org/
parameters:
teams_data: List of List of Tuples of 2 Real values representing multiple player ratings. List of teams, which is a List of players. Each player rating is a Tuple of 2 Real values (mu, sigma).
observations: List of Real values representing the match outcome. Each value in the List is the score corresponding to the team at the same index in teams_data.
return:
List of List of Tuples of 2 Real values representing new player ratings. Same structure as teams_data.
"""
team_ratings = []
for team in teams_data:
@ -599,24 +669,32 @@ def npmin(data):
def npmax(data):
return np.amax(data)
""" need to decide what to do with this function
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
kernel.fit(data)
predictions = kernel.predict(data)
centers = kernel.cluster_centers_
return centers, predictions
"""
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
"""
Performs a principle component analysis on the input data.
reference: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
parameters:
data: Arraylike of Reals representing the set of data to perform PCA on
* : refer to reference for usage, parameters follow same usage
return:
Arraylike of Reals representing the set of data that has had PCA performed. The dimensionality of the Arraylike may be smaller or equal.
"""
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
return kernel.fit_transform(data)
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
"""
Generates a decision tree classifier fitted to the given data.
reference: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
parameters:
data: List of values representing each data point of multiple axes
labels: List of values represeing the labels corresponding to the same index at data
* : refer to reference for usage, parameters follow same usage
return:
DecisionTreeClassifier model and corresponding classification accuracy metrics
"""
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
model = model.fit(data_train,labels_train)

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import ClassificationMetric'
# setup:
__version__ = "1.0.1"
__version__ = "1.0.2"
__changelog__ = """changelog:
1.0.2:
- optimized imports
1.0.1:
- fixed __all__
1.0.0:
@ -22,7 +24,6 @@ __all__ = [
]
import sklearn
from sklearn import metrics
class ClassificationMetric():

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import CorrelationTest'
# setup:
__version__ = "1.0.1"
__version__ = "1.0.2"
__changelog__ = """changelog:
1.0.2:
- optimized imports
1.0.1:
- fixed __all__
1.0.0:
@ -29,7 +31,6 @@ __all__ = [
]
import scipy
from scipy import stats
def anova_oneway(*args): #expects arrays of samples

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import KNN'
# setup:
__version__ = "1.0.0"
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- optimized imports
1.0.0:
- ported analysis.KNN() here
- removed classness
@ -23,7 +25,6 @@ __all__ = [
]
import sklearn
from sklearn import model_selection, neighbors
from . import ClassificationMetric, RegressionMetric
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
# setup:
__version__ = "1.0.0"
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- optimized imports
1.0.0:
- ported analysis.NaiveBayes() here
- removed classness
@ -24,8 +26,7 @@ __all__ = [
]
import sklearn
from sklearn import model_selection, naive_bayes
from . import ClassificationMetric, RegressionMetric
from . import ClassificationMetric
def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import RandomForest'
# setup:
__version__ = "1.0.1"
__version__ = "1.0.2"
__changelog__ = """changelog:
1.0.2:
- optimized imports
1.0.1:
- fixed __all__
1.0.0:
@ -23,8 +25,7 @@ __all__ = [
"random_forest_regressor",
]
import sklearn
from sklearn import ensemble, model_selection
import sklearn, sklearn.ensemble, sklearn.naive_bayes
from . import ClassificationMetric, RegressionMetric
def random_forest_classifier(data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import RegressionMetric'
# setup:
__version__ = "1.0.0"
__version__ = "1.0.1"
__changelog__ = """changelog:
1.0.1:
- optimized imports
1.0.0:
- ported analysis.RegressionMetric() here
"""
@ -21,7 +23,6 @@ __all__ = [
import numpy as np
import sklearn
from sklearn import metrics
class RegressionMetric():

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import SVM'
# setup:
__version__ = "1.0.2"
__version__ = "1.0.3"
__changelog__ = """changelog:
1.0.3:
- optimized imports
1.0.2:
- fixed __all__
1.0.1:
@ -30,7 +32,6 @@ __all__ = [
]
import sklearn
from sklearn import svm
from . import ClassificationMetric, RegressionMetric
class CustomKernel:

View File

@ -16,7 +16,7 @@ __changelog__ = """changelog:
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
"James Pan <zpan@imsa.edu>"
"James Pan <zpan@imsa.edu>",
)
__all__ = [

View File

@ -4,9 +4,11 @@
# this should be imported as a python module using 'from tra_analysis import StatisticalTest'
# setup:
__version__ = "1.0.2"
__version__ = "1.0.3"
__changelog__ = """changelog:
1.0.3:
- optimized imports
1.0.2:
- added tukey_multicomparison
- fixed styling
@ -61,7 +63,6 @@ __all__ = [
import numpy as np
import scipy
from scipy import stats, interpolate
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
@ -279,9 +280,9 @@ def get_tukeyQcrit(k, df, alpha=0.05):
cv001 = c[:, 2::2]
if alpha == 0.05:
intp = interpolate.interp1d(crows, cv005[:,k-2])
intp = scipy.interpolate.interp1d(crows, cv005[:,k-2])
elif alpha == 0.01:
intp = interpolate.interp1d(crows, cv001[:,k-2])
intp = scipy.interpolate.interp1d(crows, cv001[:,k-2])
else:
raise ValueError('only implemented for alpha equal to 0.01 and 0.05')
return intp(df)

View File

@ -16,6 +16,8 @@ __changelog__ = """changelog:
- deprecated titanlearn.py
- deprecated visualization.py
- removed matplotlib from requirements
- removed extra submodule imports in Analysis
- added typehinting, docstrings for each function
3.0.0:
- incremented version to release 3.0.0
3.0.0-rc2:
@ -45,6 +47,7 @@ __all__ = [
"Analysis",
"Array",
"ClassificationMetric",
"Clustering",
"CorrelationTest",
"Expression",
"Fit",