mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-13 22:56:18 +00:00
packagefied analysis (finally)
This commit is contained in:
parent
218e204281
commit
6f898d6772
Binary file not shown.
15
data analysis/analysis-master/analysis.egg-info/PKG-INFO
Normal file
15
data analysis/analysis-master/analysis.egg-info/PKG-INFO
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
Metadata-Version: 2.1
|
||||||
|
Name: analysis
|
||||||
|
Version: 1.0.0.0
|
||||||
|
Summary: analysis package developed by TitanScouting and The Red Alliance
|
||||||
|
Home-page: https://github.com/titanscout2022/tr2022-strategy
|
||||||
|
Author:
|
||||||
|
Author-email:
|
||||||
|
License: UNKNOWN
|
||||||
|
Description: analysis package developed by TitanScouting and The Red Alliance
|
||||||
|
Platform: UNKNOWN
|
||||||
|
Classifier: Programming Language :: Python :: 3
|
||||||
|
Classifier: License :: GNU General Public License v3.0
|
||||||
|
Classifier: Operating System :: OS Independent
|
||||||
|
Requires-Python: >=3.6
|
||||||
|
Description-Content-Type: text/markdown
|
11
data analysis/analysis-master/analysis.egg-info/SOURCES.txt
Normal file
11
data analysis/analysis-master/analysis.egg-info/SOURCES.txt
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
setup.py
|
||||||
|
analysis/__init__.py
|
||||||
|
analysis/analysis.py
|
||||||
|
analysis/regression.py
|
||||||
|
analysis/titanlearn.py
|
||||||
|
analysis/trueskill.py
|
||||||
|
analysis/visualization.py
|
||||||
|
analysis.egg-info/PKG-INFO
|
||||||
|
analysis.egg-info/SOURCES.txt
|
||||||
|
analysis.egg-info/dependency_links.txt
|
||||||
|
analysis.egg-info/top_level.txt
|
@ -0,0 +1 @@
|
|||||||
|
|
@ -0,0 +1 @@
|
|||||||
|
analysis
|
952
data analysis/analysis-master/build/lib/analysis/analysis.py
Normal file
952
data analysis/analysis-master/build/lib/analysis/analysis.py
Normal file
@ -0,0 +1,952 @@
|
|||||||
|
# Titan Robotics Team 2022: Data Analysis Module
|
||||||
|
# Written by Arthur Lu & Jacob Levine
|
||||||
|
# Notes:
|
||||||
|
# this should be imported as a python module using 'import analysis'
|
||||||
|
# this should be included in the local directory or environment variable
|
||||||
|
# this module has been optimized for multhreaded computing
|
||||||
|
# current benchmark of optimization: 1.33 times faster
|
||||||
|
# setup:
|
||||||
|
|
||||||
|
__version__ = "1.1.12.003"
|
||||||
|
|
||||||
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
|
__changelog__ = """changelog:
|
||||||
|
1.1.12.003:
|
||||||
|
- removed depreciated code
|
||||||
|
1.1.12.002:
|
||||||
|
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
||||||
|
1.1.12.001:
|
||||||
|
- improved readibility of regression outputs by stripping tensor data
|
||||||
|
- used map with lambda to acheive the improved readibility
|
||||||
|
- lost numba jit support with regression, and generated_jit hangs at execution
|
||||||
|
- TODO: reimplement correct numba integration in regression
|
||||||
|
1.1.12.000:
|
||||||
|
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
||||||
|
1.1.11.010:
|
||||||
|
- alphabeticaly ordered import lists
|
||||||
|
1.1.11.009:
|
||||||
|
- bug fixes
|
||||||
|
1.1.11.008:
|
||||||
|
- bug fixes
|
||||||
|
1.1.11.007:
|
||||||
|
- bug fixes
|
||||||
|
1.1.11.006:
|
||||||
|
- tested min and max
|
||||||
|
- bug fixes
|
||||||
|
1.1.11.005:
|
||||||
|
- added min and max in basic_stats
|
||||||
|
1.1.11.004:
|
||||||
|
- bug fixes
|
||||||
|
1.1.11.003:
|
||||||
|
- bug fixes
|
||||||
|
1.1.11.002:
|
||||||
|
- consolidated metrics
|
||||||
|
- fixed __all__
|
||||||
|
1.1.11.001:
|
||||||
|
- added test/train split to RandomForestClassifier and RandomForestRegressor
|
||||||
|
1.1.11.000:
|
||||||
|
- added RandomForestClassifier and RandomForestRegressor
|
||||||
|
- note: untested
|
||||||
|
1.1.10.000:
|
||||||
|
- added numba.jit to remaining functions
|
||||||
|
1.1.9.002:
|
||||||
|
- kernelized PCA and KNN
|
||||||
|
1.1.9.001:
|
||||||
|
- fixed bugs with SVM and NaiveBayes
|
||||||
|
1.1.9.000:
|
||||||
|
- added SVM class, subclasses, and functions
|
||||||
|
- note: untested
|
||||||
|
1.1.8.000:
|
||||||
|
- added NaiveBayes classification engine
|
||||||
|
- note: untested
|
||||||
|
1.1.7.000:
|
||||||
|
- added knn()
|
||||||
|
- added confusion matrix to decisiontree()
|
||||||
|
1.1.6.002:
|
||||||
|
- changed layout of __changelog to be vscode friendly
|
||||||
|
1.1.6.001:
|
||||||
|
- added additional hyperparameters to decisiontree()
|
||||||
|
1.1.6.000:
|
||||||
|
- fixed __version__
|
||||||
|
- fixed __all__ order
|
||||||
|
- added decisiontree()
|
||||||
|
1.1.5.003:
|
||||||
|
- added pca
|
||||||
|
1.1.5.002:
|
||||||
|
- reduced import list
|
||||||
|
- added kmeans clustering engine
|
||||||
|
1.1.5.001:
|
||||||
|
- simplified regression by using .to(device)
|
||||||
|
1.1.5.000:
|
||||||
|
- added polynomial regression to regression(); untested
|
||||||
|
1.1.4.000:
|
||||||
|
- added trueskill()
|
||||||
|
1.1.3.002:
|
||||||
|
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
|
||||||
|
1.1.3.001:
|
||||||
|
- changed glicko2() to return tuple instead of array
|
||||||
|
1.1.3.000:
|
||||||
|
- added glicko2_engine class and glicko()
|
||||||
|
- verified glicko2() accuracy
|
||||||
|
1.1.2.003:
|
||||||
|
- fixed elo()
|
||||||
|
1.1.2.002:
|
||||||
|
- added elo()
|
||||||
|
- elo() has bugs to be fixed
|
||||||
|
1.1.2.001:
|
||||||
|
- readded regrression import
|
||||||
|
1.1.2.000:
|
||||||
|
- integrated regression.py as regression class
|
||||||
|
- removed regression import
|
||||||
|
- fixed metadata for regression class
|
||||||
|
- fixed metadata for analysis class
|
||||||
|
1.1.1.001:
|
||||||
|
- regression_engine() bug fixes, now actaully regresses
|
||||||
|
1.1.1.000:
|
||||||
|
- added regression_engine()
|
||||||
|
- added all regressions except polynomial
|
||||||
|
1.1.0.007:
|
||||||
|
- updated _init_device()
|
||||||
|
1.1.0.006:
|
||||||
|
- removed useless try statements
|
||||||
|
1.1.0.005:
|
||||||
|
- removed impossible outcomes
|
||||||
|
1.1.0.004:
|
||||||
|
- added performance metrics (r^2, mse, rms)
|
||||||
|
1.1.0.003:
|
||||||
|
- resolved nopython mode for mean, median, stdev, variance
|
||||||
|
1.1.0.002:
|
||||||
|
- snapped (removed) majority of uneeded imports
|
||||||
|
- forced object mode (bad) on all jit
|
||||||
|
- TODO: stop numba complaining about not being able to compile in nopython mode
|
||||||
|
1.1.0.001:
|
||||||
|
- removed from sklearn import * to resolve uneeded wildcard imports
|
||||||
|
1.1.0.000:
|
||||||
|
- removed c_entities,nc_entities,obstacles,objectives from __all__
|
||||||
|
- applied numba.jit to all functions
|
||||||
|
- depreciated and removed stdev_z_split
|
||||||
|
- cleaned up histo_analysis to include numpy and numba.jit optimizations
|
||||||
|
- depreciated and removed all regression functions in favor of future pytorch optimizer
|
||||||
|
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
|
||||||
|
- optimized z_normalize using sklearn.preprocessing.normalize
|
||||||
|
- TODO: implement kernel/function based pytorch regression optimizer
|
||||||
|
1.0.9.000:
|
||||||
|
- refactored
|
||||||
|
- numpyed everything
|
||||||
|
- removed stats in favor of numpy functions
|
||||||
|
1.0.8.005:
|
||||||
|
- minor fixes
|
||||||
|
1.0.8.004:
|
||||||
|
- removed a few unused dependencies
|
||||||
|
1.0.8.003:
|
||||||
|
- added p_value function
|
||||||
|
1.0.8.002:
|
||||||
|
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
|
||||||
|
1.0.8.001:
|
||||||
|
- refactors
|
||||||
|
- bugfixes
|
||||||
|
1.0.8.000:
|
||||||
|
- depreciated histo_analysis_old
|
||||||
|
- depreciated debug
|
||||||
|
- altered basic_analysis to take array data instead of filepath
|
||||||
|
- refactor
|
||||||
|
- optimization
|
||||||
|
1.0.7.002:
|
||||||
|
- bug fixes
|
||||||
|
1.0.7.001:
|
||||||
|
- bug fixes
|
||||||
|
1.0.7.000:
|
||||||
|
- added tanh_regression (logistical regression)
|
||||||
|
- bug fixes
|
||||||
|
1.0.6.005:
|
||||||
|
- added z_normalize function to normalize dataset
|
||||||
|
- bug fixes
|
||||||
|
1.0.6.004:
|
||||||
|
- bug fixes
|
||||||
|
1.0.6.003:
|
||||||
|
- bug fixes
|
||||||
|
1.0.6.002:
|
||||||
|
- bug fixes
|
||||||
|
1.0.6.001:
|
||||||
|
- corrected __all__ to contain all of the functions
|
||||||
|
1.0.6.000:
|
||||||
|
- added calc_overfit, which calculates two measures of overfit, error and performance
|
||||||
|
- added calculating overfit to optimize_regression
|
||||||
|
1.0.5.000:
|
||||||
|
- added optimize_regression function, which is a sample function to find the optimal regressions
|
||||||
|
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
|
||||||
|
- planned addition: overfit detection in the optimize_regression function
|
||||||
|
1.0.4.002:
|
||||||
|
- added __changelog__
|
||||||
|
- updated debug function with log and exponential regressions
|
||||||
|
1.0.4.001:
|
||||||
|
- added log regressions
|
||||||
|
- added exponential regressions
|
||||||
|
- added log_regression and exp_regression to __all__
|
||||||
|
1.0.3.008:
|
||||||
|
- added debug function to further consolidate functions
|
||||||
|
1.0.3.007:
|
||||||
|
- added builtin benchmark function
|
||||||
|
- added builtin random (linear) data generation function
|
||||||
|
- added device initialization (_init_device)
|
||||||
|
1.0.3.006:
|
||||||
|
- reorganized the imports list to be in alphabetical order
|
||||||
|
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
|
||||||
|
1.0.3.005:
|
||||||
|
- major bug fixes
|
||||||
|
- updated historical analysis
|
||||||
|
- depreciated old historical analysis
|
||||||
|
1.0.3.004:
|
||||||
|
- added __version__, __author__, __all__
|
||||||
|
- added polynomial regression
|
||||||
|
- added root mean squared function
|
||||||
|
- added r squared function
|
||||||
|
1.0.3.003:
|
||||||
|
- bug fixes
|
||||||
|
- added c_entities
|
||||||
|
1.0.3.002:
|
||||||
|
- bug fixes
|
||||||
|
- added nc_entities, obstacles, objectives
|
||||||
|
- consolidated statistics.py to analysis.py
|
||||||
|
1.0.3.001:
|
||||||
|
- compiled 1d, column, and row basic stats into basic stats function
|
||||||
|
1.0.3.000:
|
||||||
|
- added historical analysis function
|
||||||
|
1.0.2.xxx:
|
||||||
|
- added z score test
|
||||||
|
1.0.1.xxx:
|
||||||
|
- major bug fixes
|
||||||
|
1.0.0.xxx:
|
||||||
|
- added loading csv
|
||||||
|
- added 1d, column, row basic stats
|
||||||
|
"""
|
||||||
|
|
||||||
|
__author__ = (
|
||||||
|
"Arthur Lu <learthurgo@gmail.com>",
|
||||||
|
"Jacob Levine <jlevine@imsa.edu>",
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'_init_device',
|
||||||
|
'load_csv',
|
||||||
|
'basic_stats',
|
||||||
|
'z_score',
|
||||||
|
'z_normalize',
|
||||||
|
'histo_analysis',
|
||||||
|
'regression',
|
||||||
|
'elo',
|
||||||
|
'gliko2',
|
||||||
|
'trueskill',
|
||||||
|
'RegressionMetrics',
|
||||||
|
'ClassificationMetrics',
|
||||||
|
'kmeans',
|
||||||
|
'pca',
|
||||||
|
'decisiontree',
|
||||||
|
'knn_classifier',
|
||||||
|
'knn_regressor',
|
||||||
|
'NaiveBayes',
|
||||||
|
'SVM',
|
||||||
|
'random_forest_classifier',
|
||||||
|
'random_forest_regressor',
|
||||||
|
'Regression',
|
||||||
|
'Gliko2',
|
||||||
|
# all statistics functions left out due to integration in other functions
|
||||||
|
]
|
||||||
|
|
||||||
|
# now back to your regularly scheduled programming:
|
||||||
|
|
||||||
|
# imports (now in alphabetical order! v 1.0.3.006):
|
||||||
|
|
||||||
|
import csv
|
||||||
|
import numba
|
||||||
|
from numba import jit
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
import sklearn
|
||||||
|
from sklearn import *
|
||||||
|
import torch
|
||||||
|
try:
|
||||||
|
from analysis import trueskill as Trueskill
|
||||||
|
except:
|
||||||
|
import trueskill as Trueskill
|
||||||
|
|
||||||
|
class error(ValueError):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def _init_device(): # initiates computation device for ANNs
|
||||||
|
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
||||||
|
return device
|
||||||
|
|
||||||
|
def load_csv(filepath):
|
||||||
|
with open(filepath, newline='') as csvfile:
|
||||||
|
file_array = np.array(list(csv.reader(csvfile)))
|
||||||
|
csvfile.close()
|
||||||
|
return file_array
|
||||||
|
|
||||||
|
# expects 1d array
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def basic_stats(data):
|
||||||
|
|
||||||
|
data_t = np.array(data).astype(float)
|
||||||
|
|
||||||
|
_mean = mean(data_t)
|
||||||
|
_median = median(data_t)
|
||||||
|
_stdev = stdev(data_t)
|
||||||
|
_variance = variance(data_t)
|
||||||
|
_min = npmin(data_t)
|
||||||
|
_max = npmax(data_t)
|
||||||
|
|
||||||
|
return _mean, _median, _stdev, _variance, _min, _max
|
||||||
|
|
||||||
|
# returns z score with inputs of point, mean and standard deviation of spread
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def z_score(point, mean, stdev):
|
||||||
|
score = (point - mean) / stdev
|
||||||
|
|
||||||
|
return score
|
||||||
|
|
||||||
|
# expects 2d array, normalizes across all axes
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def z_normalize(array, *args):
|
||||||
|
|
||||||
|
array = np.array(array)
|
||||||
|
for arg in args:
|
||||||
|
array = sklearn.preprocessing.normalize(array, axis = arg)
|
||||||
|
|
||||||
|
return array
|
||||||
|
|
||||||
|
@jit(forceobj=True)
|
||||||
|
# expects 2d array of [x,y]
|
||||||
|
def histo_analysis(hist_data):
|
||||||
|
|
||||||
|
hist_data = np.array(hist_data)
|
||||||
|
derivative = np.array(len(hist_data) - 1, dtype = float)
|
||||||
|
t = np.diff(hist_data)
|
||||||
|
derivative = t[1] / t[0]
|
||||||
|
np.sort(derivative)
|
||||||
|
|
||||||
|
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||||
|
|
||||||
|
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
|
regressions = []
|
||||||
|
Regression().set_device(ndevice)
|
||||||
|
|
||||||
|
if 'lin' in args: # formula: ax + b
|
||||||
|
|
||||||
|
model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
params = model[0].parameters
|
||||||
|
params[:] = map(lambda x: x.item(), params)
|
||||||
|
regressions.append((params, model[1][::-1][0]))
|
||||||
|
|
||||||
|
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||||
|
|
||||||
|
model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
params = model[0].parameters
|
||||||
|
params[:] = map(lambda x: x.item(), params)
|
||||||
|
regressions.append((params, model[1][::-1][0]))
|
||||||
|
|
||||||
|
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||||
|
|
||||||
|
model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
params = model[0].parameters
|
||||||
|
params[:] = map(lambda x: x.item(), params)
|
||||||
|
regressions.append((params, model[1][::-1][0]))
|
||||||
|
|
||||||
|
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||||
|
|
||||||
|
plys = []
|
||||||
|
limit = len(outputs[0])
|
||||||
|
|
||||||
|
for i in range(2, limit):
|
||||||
|
|
||||||
|
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
|
||||||
|
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
|
||||||
|
model = model.fit(np.rot90(inputs), np.rot90(outputs))
|
||||||
|
|
||||||
|
params = model.steps[1][1].intercept_.tolist()
|
||||||
|
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
|
||||||
|
params.flatten()
|
||||||
|
params = params.tolist()
|
||||||
|
|
||||||
|
plys.append(params)
|
||||||
|
|
||||||
|
regressions.append(plys)
|
||||||
|
|
||||||
|
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
||||||
|
|
||||||
|
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
|
params = model[0].parameters
|
||||||
|
params[:] = map(lambda x: x.item(), params)
|
||||||
|
regressions.append((params, model[1][::-1][0]))
|
||||||
|
|
||||||
|
return regressions
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def elo(starting_score, opposing_score, observed, N, K):
|
||||||
|
|
||||||
|
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
|
||||||
|
|
||||||
|
return starting_score + K*(np.sum(observed) - np.sum(expected))
|
||||||
|
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def gliko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||||
|
|
||||||
|
player = Gliko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||||
|
|
||||||
|
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||||
|
|
||||||
|
return (player.rating, player.rd, player.vol)
|
||||||
|
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||||
|
|
||||||
|
team_ratings = []
|
||||||
|
|
||||||
|
for team in teams_data:
|
||||||
|
team_temp = []
|
||||||
|
for player in team:
|
||||||
|
player = Trueskill.Rating(player[0], player[1])
|
||||||
|
team_temp.append(player)
|
||||||
|
team_ratings.append(team_temp)
|
||||||
|
|
||||||
|
return Trueskill.rate(teams_data, observations)
|
||||||
|
|
||||||
|
class RegressionMetrics():
|
||||||
|
|
||||||
|
def __new__(cls, predictions, targets):
|
||||||
|
|
||||||
|
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
|
||||||
|
|
||||||
|
def r_squared(self, predictions, targets): # assumes equal size inputs
|
||||||
|
|
||||||
|
return sklearn.metrics.r2_score(targets, predictions)
|
||||||
|
|
||||||
|
def mse(self, predictions, targets):
|
||||||
|
|
||||||
|
return sklearn.metrics.mean_squared_error(targets, predictions)
|
||||||
|
|
||||||
|
def rms(self, predictions, targets):
|
||||||
|
|
||||||
|
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|
||||||
|
|
||||||
|
class ClassificationMetrics():
|
||||||
|
|
||||||
|
def __new__(cls, predictions, targets):
|
||||||
|
|
||||||
|
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
|
||||||
|
|
||||||
|
def cm(self, predictions, targets):
|
||||||
|
|
||||||
|
return sklearn.metrics.confusion_matrix(targets, predictions)
|
||||||
|
|
||||||
|
def cr(self, predictions, targets):
|
||||||
|
|
||||||
|
return sklearn.metrics.classification_report(targets, predictions)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def mean(data):
|
||||||
|
|
||||||
|
return np.mean(data)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def median(data):
|
||||||
|
|
||||||
|
return np.median(data)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def stdev(data):
|
||||||
|
|
||||||
|
return np.std(data)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def variance(data):
|
||||||
|
|
||||||
|
return np.var(data)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def npmin(data):
|
||||||
|
|
||||||
|
return np.amin(data)
|
||||||
|
|
||||||
|
@jit(nopython=True)
|
||||||
|
def npmax(data):
|
||||||
|
|
||||||
|
return np.amax(data)
|
||||||
|
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||||
|
|
||||||
|
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
||||||
|
kernel.fit(data)
|
||||||
|
predictions = kernel.predict(data)
|
||||||
|
centers = kernel.cluster_centers_
|
||||||
|
|
||||||
|
return centers, predictions
|
||||||
|
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
||||||
|
|
||||||
|
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
||||||
|
|
||||||
|
return kernel.fit_transform(data)
|
||||||
|
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||||
|
model = model.fit(data_train,labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
metrics = ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
|
return model, metrics
|
||||||
|
|
||||||
|
@jit(forceobj=True)
|
||||||
|
def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.neighbors.KNeighborsClassifier()
|
||||||
|
model.fit(data_train, labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
|
return model, ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
|
def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||||
|
|
||||||
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||||
|
model.fit(data_train, outputs_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
|
return model, RegressionMetrics(predictions, outputs_test)
|
||||||
|
|
||||||
|
class NaiveBayes:
|
||||||
|
|
||||||
|
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||||||
|
model.fit(data_train, labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
|
return model, ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
|
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||||||
|
model.fit(data_train, labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
|
return model, ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
|
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||||||
|
model.fit(data_train, labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
|
return model, ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
|
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||||||
|
model.fit(data_train, labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
|
||||||
|
return model, ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
|
class SVM:
|
||||||
|
|
||||||
|
class CustomKernel:
|
||||||
|
|
||||||
|
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
||||||
|
|
||||||
|
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||||
|
|
||||||
|
class StandardKernel:
|
||||||
|
|
||||||
|
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
||||||
|
|
||||||
|
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||||
|
|
||||||
|
class PrebuiltKernel:
|
||||||
|
|
||||||
|
class Linear:
|
||||||
|
|
||||||
|
def __new__(cls):
|
||||||
|
|
||||||
|
return sklearn.svm.SVC(kernel = 'linear')
|
||||||
|
|
||||||
|
class Polynomial:
|
||||||
|
|
||||||
|
def __new__(cls, power, r_bias):
|
||||||
|
|
||||||
|
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
||||||
|
|
||||||
|
class RBF:
|
||||||
|
|
||||||
|
def __new__(cls, gamma):
|
||||||
|
|
||||||
|
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
||||||
|
|
||||||
|
class Sigmoid:
|
||||||
|
|
||||||
|
def __new__(cls, r_bias):
|
||||||
|
|
||||||
|
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
||||||
|
|
||||||
|
def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
|
||||||
|
|
||||||
|
return kernel.fit(train_data, train_outputs)
|
||||||
|
|
||||||
|
def eval_classification(self, kernel, test_data, test_outputs):
|
||||||
|
|
||||||
|
predictions = kernel.predict(test_data)
|
||||||
|
|
||||||
|
return ClassificationMetrics(predictions, test_outputs)
|
||||||
|
|
||||||
|
def eval_regression(self, kernel, test_data, test_outputs):
|
||||||
|
|
||||||
|
predictions = kernel.predict(test_data)
|
||||||
|
|
||||||
|
return RegressionMetrics(predictions, test_outputs)
|
||||||
|
|
||||||
|
def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||||
|
kernel.fit(data_train, labels_train)
|
||||||
|
predictions = kernel.predict(data_test)
|
||||||
|
|
||||||
|
return kernel, ClassificationMetrics(predictions, labels_test)
|
||||||
|
|
||||||
|
def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||||
|
|
||||||
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||||
|
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||||
|
kernel.fit(data_train, outputs_train)
|
||||||
|
predictions = kernel.predict(data_test)
|
||||||
|
|
||||||
|
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||||
|
|
||||||
|
class Regression:
|
||||||
|
|
||||||
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
|
# Written by Arthur Lu & Jacob Levine
|
||||||
|
# Notes:
|
||||||
|
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||||
|
# this module is cuda-optimized and vectorized (except for one small part)
|
||||||
|
# setup:
|
||||||
|
|
||||||
|
__version__ = "1.0.0.003"
|
||||||
|
|
||||||
|
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||||||
|
__changelog__ = """
|
||||||
|
1.0.0.003:
|
||||||
|
- bug fixes
|
||||||
|
1.0.0.002:
|
||||||
|
-Added more parameters to log, exponential, polynomial
|
||||||
|
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||||
|
to train the scaling and shifting of sigmoids
|
||||||
|
|
||||||
|
1.0.0.001:
|
||||||
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||||
|
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||||
|
"""
|
||||||
|
|
||||||
|
__author__ = (
|
||||||
|
"Jacob Levine <jlevine@imsa.edu>",
|
||||||
|
"Arthur Lu <learthurgo@gmail.com>"
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'factorial',
|
||||||
|
'take_all_pwrs',
|
||||||
|
'num_poly_terms',
|
||||||
|
'set_device',
|
||||||
|
'LinearRegKernel',
|
||||||
|
'SigmoidalRegKernel',
|
||||||
|
'LogRegKernel',
|
||||||
|
'PolyRegKernel',
|
||||||
|
'ExpRegKernel',
|
||||||
|
'SigmoidalRegKernelArthur',
|
||||||
|
'SGDTrain',
|
||||||
|
'CustomTrain'
|
||||||
|
]
|
||||||
|
|
||||||
|
global device
|
||||||
|
|
||||||
|
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
|
#todo: document completely
|
||||||
|
|
||||||
|
def set_device(self, new_device):
|
||||||
|
device=new_device
|
||||||
|
|
||||||
|
class LinearRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
bias=None
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||||
|
return torch.matmul(self.weights,mtx)+long_bias
|
||||||
|
|
||||||
|
class SigmoidalRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
bias=None
|
||||||
|
sigmoid=torch.nn.Sigmoid()
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||||
|
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||||||
|
|
||||||
|
class SigmoidalRegKernelArthur():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
in_bias=None
|
||||||
|
scal_mult=None
|
||||||
|
out_bias=None
|
||||||
|
sigmoid=torch.nn.Sigmoid()
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||||
|
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||||
|
|
||||||
|
class LogRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
in_bias=None
|
||||||
|
scal_mult=None
|
||||||
|
out_bias=None
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||||
|
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||||
|
|
||||||
|
class ExpRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
in_bias=None
|
||||||
|
scal_mult=None
|
||||||
|
out_bias=None
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||||
|
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||||
|
|
||||||
|
class PolyRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
bias=None
|
||||||
|
power=None
|
||||||
|
def __init__(self, num_vars, power):
|
||||||
|
self.power=power
|
||||||
|
num_terms=self.num_poly_terms(num_vars, power)
|
||||||
|
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.bias]
|
||||||
|
def num_poly_terms(self,num_vars, power):
|
||||||
|
if power == 0:
|
||||||
|
return 0
|
||||||
|
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||||||
|
def factorial(self,n):
|
||||||
|
if n==0:
|
||||||
|
return 1
|
||||||
|
else:
|
||||||
|
return n*self.factorial(n-1)
|
||||||
|
def take_all_pwrs(self, vec, pwr):
|
||||||
|
#todo: vectorize (kinda)
|
||||||
|
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||||
|
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||||||
|
for i in torch.t(combins).to(device).to(torch.float):
|
||||||
|
out *= i
|
||||||
|
if pwr == 1:
|
||||||
|
return out
|
||||||
|
else:
|
||||||
|
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||||||
|
def forward(self,mtx):
|
||||||
|
#TODO: Vectorize the last part
|
||||||
|
cols=[]
|
||||||
|
for i in torch.t(mtx):
|
||||||
|
cols.append(self.take_all_pwrs(i,self.power))
|
||||||
|
new_mtx=torch.t(torch.stack(cols))
|
||||||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||||
|
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||||
|
|
||||||
|
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||||
|
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||||
|
data_cuda=data.to(device)
|
||||||
|
ground_cuda=ground.to(device)
|
||||||
|
if (return_losses):
|
||||||
|
losses=[]
|
||||||
|
for i in range(iterations):
|
||||||
|
with torch.set_grad_enabled(True):
|
||||||
|
optim.zero_grad()
|
||||||
|
pred=kernel.forward(data_cuda)
|
||||||
|
ls=loss(pred,ground_cuda)
|
||||||
|
losses.append(ls.item())
|
||||||
|
ls.backward()
|
||||||
|
optim.step()
|
||||||
|
return [kernel,losses]
|
||||||
|
else:
|
||||||
|
for i in range(iterations):
|
||||||
|
with torch.set_grad_enabled(True):
|
||||||
|
optim.zero_grad()
|
||||||
|
pred=kernel.forward(data_cuda)
|
||||||
|
ls=loss(pred,ground_cuda)
|
||||||
|
ls.backward()
|
||||||
|
optim.step()
|
||||||
|
return kernel
|
||||||
|
|
||||||
|
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||||
|
data_cuda=data.to(device)
|
||||||
|
ground_cuda=ground.to(device)
|
||||||
|
if (return_losses):
|
||||||
|
losses=[]
|
||||||
|
for i in range(iterations):
|
||||||
|
with torch.set_grad_enabled(True):
|
||||||
|
optim.zero_grad()
|
||||||
|
pred=kernel.forward(data)
|
||||||
|
ls=loss(pred,ground)
|
||||||
|
losses.append(ls.item())
|
||||||
|
ls.backward()
|
||||||
|
optim.step()
|
||||||
|
return [kernel,losses]
|
||||||
|
else:
|
||||||
|
for i in range(iterations):
|
||||||
|
with torch.set_grad_enabled(True):
|
||||||
|
optim.zero_grad()
|
||||||
|
pred=kernel.forward(data_cuda)
|
||||||
|
ls=loss(pred,ground_cuda)
|
||||||
|
ls.backward()
|
||||||
|
optim.step()
|
||||||
|
return kernel
|
||||||
|
|
||||||
|
class Gliko2:
|
||||||
|
|
||||||
|
_tau = 0.5
|
||||||
|
|
||||||
|
def getRating(self):
|
||||||
|
return (self.__rating * 173.7178) + 1500
|
||||||
|
|
||||||
|
def setRating(self, rating):
|
||||||
|
self.__rating = (rating - 1500) / 173.7178
|
||||||
|
|
||||||
|
rating = property(getRating, setRating)
|
||||||
|
|
||||||
|
def getRd(self):
|
||||||
|
return self.__rd * 173.7178
|
||||||
|
|
||||||
|
def setRd(self, rd):
|
||||||
|
self.__rd = rd / 173.7178
|
||||||
|
|
||||||
|
rd = property(getRd, setRd)
|
||||||
|
|
||||||
|
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
|
||||||
|
|
||||||
|
self.setRating(rating)
|
||||||
|
self.setRd(rd)
|
||||||
|
self.vol = vol
|
||||||
|
|
||||||
|
def _preRatingRD(self):
|
||||||
|
|
||||||
|
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
|
||||||
|
|
||||||
|
def update_player(self, rating_list, RD_list, outcome_list):
|
||||||
|
|
||||||
|
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
|
||||||
|
RD_list = [x / 173.7178 for x in RD_list]
|
||||||
|
|
||||||
|
v = self._v(rating_list, RD_list)
|
||||||
|
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
|
||||||
|
self._preRatingRD()
|
||||||
|
|
||||||
|
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempSum += self._g(RD_list[i]) * \
|
||||||
|
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||||
|
self.__rating += math.pow(self.__rd, 2) * tempSum
|
||||||
|
|
||||||
|
|
||||||
|
def _newVol(self, rating_list, RD_list, outcome_list, v):
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
delta = self._delta(rating_list, RD_list, outcome_list, v)
|
||||||
|
a = math.log(math.pow(self.vol, 2))
|
||||||
|
tau = self._tau
|
||||||
|
x0 = a
|
||||||
|
x1 = 0
|
||||||
|
|
||||||
|
while x0 != x1:
|
||||||
|
# New iteration, so x(i) becomes x(i-1)
|
||||||
|
x0 = x1
|
||||||
|
d = math.pow(self.__rating, 2) + v + math.exp(x0)
|
||||||
|
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
|
||||||
|
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
|
||||||
|
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
|
||||||
|
(math.pow(self.__rating, 2) + v) \
|
||||||
|
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
|
||||||
|
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
|
||||||
|
x1 = x0 - (h1 / h2)
|
||||||
|
|
||||||
|
return math.exp(x1 / 2)
|
||||||
|
|
||||||
|
def _delta(self, rating_list, RD_list, outcome_list, v):
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
|
||||||
|
return v * tempSum
|
||||||
|
|
||||||
|
def _v(self, rating_list, RD_list):
|
||||||
|
|
||||||
|
tempSum = 0
|
||||||
|
for i in range(len(rating_list)):
|
||||||
|
tempE = self._E(rating_list[i], RD_list[i])
|
||||||
|
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
|
||||||
|
return 1 / tempSum
|
||||||
|
|
||||||
|
def _E(self, p2rating, p2RD):
|
||||||
|
|
||||||
|
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
|
||||||
|
(self.__rating - p2rating)))
|
||||||
|
|
||||||
|
def _g(self, RD):
|
||||||
|
|
||||||
|
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
|
||||||
|
|
||||||
|
def did_not_compete(self):
|
||||||
|
|
||||||
|
self._preRatingRD()
|
217
data analysis/analysis-master/build/lib/analysis/regression.py
Normal file
217
data analysis/analysis-master/build/lib/analysis/regression.py
Normal file
@ -0,0 +1,217 @@
|
|||||||
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
|
# Written by Arthur Lu & Jacob Levine
|
||||||
|
# Notes:
|
||||||
|
# this should be imported as a python module using 'import regression'
|
||||||
|
# this should be included in the local directory or environment variable
|
||||||
|
# this module is cuda-optimized and vectorized (except for one small part)
|
||||||
|
# setup:
|
||||||
|
|
||||||
|
__version__ = "1.0.0.002"
|
||||||
|
|
||||||
|
# changelog should be viewed using print(regression.__changelog__)
|
||||||
|
__changelog__ = """
|
||||||
|
1.0.0.002:
|
||||||
|
-Added more parameters to log, exponential, polynomial
|
||||||
|
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||||
|
to train the scaling and shifting of sigmoids
|
||||||
|
|
||||||
|
1.0.0.001:
|
||||||
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||||
|
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||||||
|
"""
|
||||||
|
|
||||||
|
__author__ = (
|
||||||
|
"Jacob Levine <jlevine@imsa.edu>",
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'factorial',
|
||||||
|
'take_all_pwrs',
|
||||||
|
'num_poly_terms',
|
||||||
|
'set_device',
|
||||||
|
'LinearRegKernel',
|
||||||
|
'SigmoidalRegKernel',
|
||||||
|
'LogRegKernel',
|
||||||
|
'PolyRegKernel',
|
||||||
|
'ExpRegKernel',
|
||||||
|
'SigmoidalRegKernelArthur',
|
||||||
|
'SGDTrain',
|
||||||
|
'CustomTrain'
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
# imports (just one for now):
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
|
#todo: document completely
|
||||||
|
|
||||||
|
def factorial(n):
|
||||||
|
if n==0:
|
||||||
|
return 1
|
||||||
|
else:
|
||||||
|
return n*factorial(n-1)
|
||||||
|
def num_poly_terms(num_vars, power):
|
||||||
|
if power == 0:
|
||||||
|
return 0
|
||||||
|
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
|
||||||
|
|
||||||
|
def take_all_pwrs(vec,pwr):
|
||||||
|
#todo: vectorize (kinda)
|
||||||
|
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||||||
|
out=torch.ones(combins.size()[0])
|
||||||
|
for i in torch.t(combins):
|
||||||
|
out *= i
|
||||||
|
return torch.cat(out,take_all_pwrs(vec, pwr-1))
|
||||||
|
|
||||||
|
def set_device(new_device):
|
||||||
|
global device
|
||||||
|
device=new_device
|
||||||
|
|
||||||
|
class LinearRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
bias=None
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||||
|
return torch.matmul(self.weights,mtx)+long_bias
|
||||||
|
|
||||||
|
class SigmoidalRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
bias=None
|
||||||
|
sigmoid=torch.nn.Sigmoid()
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||||
|
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||||||
|
|
||||||
|
class SigmoidalRegKernelArthur():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
in_bias=None
|
||||||
|
scal_mult=None
|
||||||
|
out_bias=None
|
||||||
|
sigmoid=torch.nn.Sigmoid()
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||||
|
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||||
|
|
||||||
|
class LogRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
in_bias=None
|
||||||
|
scal_mult=None
|
||||||
|
out_bias=None
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||||
|
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||||
|
|
||||||
|
class ExpRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
in_bias=None
|
||||||
|
scal_mult=None
|
||||||
|
out_bias=None
|
||||||
|
def __init__(self, num_vars):
|
||||||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||||||
|
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||||||
|
|
||||||
|
class PolyRegKernel():
|
||||||
|
parameters= []
|
||||||
|
weights=None
|
||||||
|
bias=None
|
||||||
|
power=None
|
||||||
|
def __init__(self, num_vars, power):
|
||||||
|
self.power=power
|
||||||
|
num_terms=num_poly_terms(num_vars, power)
|
||||||
|
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||||||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
|
self.parameters=[self.weights,self.bias]
|
||||||
|
def forward(self,mtx):
|
||||||
|
#TODO: Vectorize the last part
|
||||||
|
cols=[]
|
||||||
|
for i in torch.t(mtx):
|
||||||
|
cols.append(take_all_pwrs(i,self.power))
|
||||||
|
new_mtx=torch.t(torch.stack(cols))
|
||||||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||||||
|
return torch.matmul(self.weights,new_mtx)+long_bias
|
||||||
|
|
||||||
|
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||||||
|
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||||||
|
data_cuda=data.to(device)
|
||||||
|
ground_cuda=ground.to(device)
|
||||||
|
if (return_losses):
|
||||||
|
losses=[]
|
||||||
|
for i in range(iterations):
|
||||||
|
with torch.set_grad_enabled(True):
|
||||||
|
optim.zero_grad()
|
||||||
|
pred=kernel.forward(data_cuda)
|
||||||
|
ls=loss(pred,ground_cuda)
|
||||||
|
losses.append(ls.item())
|
||||||
|
ls.backward()
|
||||||
|
optim.step()
|
||||||
|
return [kernel,losses]
|
||||||
|
else:
|
||||||
|
for i in range(iterations):
|
||||||
|
with torch.set_grad_enabled(True):
|
||||||
|
optim.zero_grad()
|
||||||
|
pred=kernel.forward(data_cuda)
|
||||||
|
ls=loss(pred,ground_cuda)
|
||||||
|
ls.backward()
|
||||||
|
optim.step()
|
||||||
|
return kernel
|
||||||
|
|
||||||
|
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||||||
|
data_cuda=data.to(device)
|
||||||
|
ground_cuda=ground.to(device)
|
||||||
|
if (return_losses):
|
||||||
|
losses=[]
|
||||||
|
for i in range(iterations):
|
||||||
|
with torch.set_grad_enabled(True):
|
||||||
|
optim.zero_grad()
|
||||||
|
pred=kernel.forward(data)
|
||||||
|
ls=loss(pred,ground)
|
||||||
|
losses.append(ls.item())
|
||||||
|
ls.backward()
|
||||||
|
optim.step()
|
||||||
|
return [kernel,losses]
|
||||||
|
else:
|
||||||
|
for i in range(iterations):
|
||||||
|
with torch.set_grad_enabled(True):
|
||||||
|
optim.zero_grad()
|
||||||
|
pred=kernel.forward(data_cuda)
|
||||||
|
ls=loss(pred,ground_cuda)
|
||||||
|
ls.backward()
|
||||||
|
optim.step()
|
||||||
|
return kernel
|
122
data analysis/analysis-master/build/lib/analysis/titanlearn.py
Normal file
122
data analysis/analysis-master/build/lib/analysis/titanlearn.py
Normal file
@ -0,0 +1,122 @@
|
|||||||
|
# Titan Robotics Team 2022: ML Module
|
||||||
|
# Written by Arthur Lu & Jacob Levine
|
||||||
|
# Notes:
|
||||||
|
# this should be imported as a python module using 'import titanlearn'
|
||||||
|
# this should be included in the local directory or environment variable
|
||||||
|
# this module is optimized for multhreaded computing
|
||||||
|
# this module learns from its mistakes far faster than 2022's captains
|
||||||
|
# setup:
|
||||||
|
|
||||||
|
__version__ = "2.0.1.001"
|
||||||
|
|
||||||
|
#changelog should be viewed using print(analysis.__changelog__)
|
||||||
|
__changelog__ = """changelog:
|
||||||
|
2.0.1.001:
|
||||||
|
- removed matplotlib import
|
||||||
|
- removed graphloss()
|
||||||
|
2.0.1.000:
|
||||||
|
- added net, dataset, dataloader, and stdtrain template definitions
|
||||||
|
- added graphloss function
|
||||||
|
2.0.0.001:
|
||||||
|
- added clear functions
|
||||||
|
2.0.0.000:
|
||||||
|
- complete rewrite planned
|
||||||
|
- depreciated 1.0.0.xxx versions
|
||||||
|
- added simple training loop
|
||||||
|
1.0.0.xxx:
|
||||||
|
-added generation of ANNS, basic SGD training
|
||||||
|
"""
|
||||||
|
|
||||||
|
__author__ = (
|
||||||
|
"Arthur Lu <arthurlu@ttic.edu>,"
|
||||||
|
"Jacob Levine <jlevine@ttic.edu>,"
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'clear',
|
||||||
|
'net',
|
||||||
|
'dataset',
|
||||||
|
'dataloader',
|
||||||
|
'train',
|
||||||
|
'stdtrainer',
|
||||||
|
]
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from os import system, name
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def clear():
|
||||||
|
if name == 'nt':
|
||||||
|
_ = system('cls')
|
||||||
|
else:
|
||||||
|
_ = system('clear')
|
||||||
|
|
||||||
|
class net(torch.nn.Module): #template for standard neural net
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
pass
|
||||||
|
|
||||||
|
class dataset(torch.utils.data.Dataset): #template for standard dataset
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(torch.utils.data.Dataset).__init__()
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def dataloader(dataset, batch_size, num_workers, shuffle = True):
|
||||||
|
|
||||||
|
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
||||||
|
|
||||||
|
def train(device, net, epochs, trainloader, optimizer, criterion): #expects standard dataloader, whch returns (inputs, labels)
|
||||||
|
|
||||||
|
dataset_len = trainloader.dataset.__len__()
|
||||||
|
iter_count = 0
|
||||||
|
running_loss = 0
|
||||||
|
running_loss_list = []
|
||||||
|
|
||||||
|
for epoch in range(epochs): # loop over the dataset multiple times
|
||||||
|
|
||||||
|
for i, data in enumerate(trainloader, 0):
|
||||||
|
|
||||||
|
inputs = data[0].to(device)
|
||||||
|
labels = data[1].to(device)
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
outputs = net(inputs)
|
||||||
|
loss = criterion(outputs, labels.to(torch.float))
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
# monitoring steps below
|
||||||
|
|
||||||
|
iter_count += 1
|
||||||
|
running_loss += loss.item()
|
||||||
|
running_loss_list.append(running_loss)
|
||||||
|
clear()
|
||||||
|
|
||||||
|
print("training on: " + device)
|
||||||
|
print("iteration: " + str(i) + "/" + str(int(dataset_len / trainloader.batch_size)) + " | " + "epoch: " + str(epoch) + "/" + str(epochs))
|
||||||
|
print("current batch loss: " + str(loss.item))
|
||||||
|
print("running loss: " + str(running_loss / iter_count))
|
||||||
|
|
||||||
|
return net, running_loss_list
|
||||||
|
print("finished training")
|
||||||
|
|
||||||
|
def stdtrainer(net, criterion, optimizer, dataloader, epochs, batch_size):
|
||||||
|
|
||||||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
net = net.to(device)
|
||||||
|
criterion = criterion.to(device)
|
||||||
|
optimizer = optimizer.to(device)
|
||||||
|
trainloader = dataloader
|
||||||
|
|
||||||
|
return train(device, net, epochs, trainloader, optimizer, criterion)
|
907
data analysis/analysis-master/build/lib/analysis/trueskill.py
Normal file
907
data analysis/analysis-master/build/lib/analysis/trueskill.py
Normal file
@ -0,0 +1,907 @@
|
|||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
from itertools import chain
|
||||||
|
import math
|
||||||
|
|
||||||
|
from six import iteritems
|
||||||
|
from six.moves import map, range, zip
|
||||||
|
from six import iterkeys
|
||||||
|
|
||||||
|
import copy
|
||||||
|
try:
|
||||||
|
from numbers import Number
|
||||||
|
except ImportError:
|
||||||
|
Number = (int, long, float, complex)
|
||||||
|
|
||||||
|
inf = float('inf')
|
||||||
|
|
||||||
|
class Gaussian(object):
|
||||||
|
#: Precision, the inverse of the variance.
|
||||||
|
pi = 0
|
||||||
|
#: Precision adjusted mean, the precision multiplied by the mean.
|
||||||
|
tau = 0
|
||||||
|
|
||||||
|
def __init__(self, mu=None, sigma=None, pi=0, tau=0):
|
||||||
|
if mu is not None:
|
||||||
|
if sigma is None:
|
||||||
|
raise TypeError('sigma argument is needed')
|
||||||
|
elif sigma == 0:
|
||||||
|
raise ValueError('sigma**2 should be greater than 0')
|
||||||
|
pi = sigma ** -2
|
||||||
|
tau = pi * mu
|
||||||
|
self.pi = pi
|
||||||
|
self.tau = tau
|
||||||
|
|
||||||
|
@property
|
||||||
|
def mu(self):
|
||||||
|
return self.pi and self.tau / self.pi
|
||||||
|
|
||||||
|
@property
|
||||||
|
def sigma(self):
|
||||||
|
return math.sqrt(1 / self.pi) if self.pi else inf
|
||||||
|
|
||||||
|
def __mul__(self, other):
|
||||||
|
pi, tau = self.pi + other.pi, self.tau + other.tau
|
||||||
|
return Gaussian(pi=pi, tau=tau)
|
||||||
|
|
||||||
|
def __truediv__(self, other):
|
||||||
|
pi, tau = self.pi - other.pi, self.tau - other.tau
|
||||||
|
return Gaussian(pi=pi, tau=tau)
|
||||||
|
|
||||||
|
__div__ = __truediv__ # for Python 2
|
||||||
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
return self.pi == other.pi and self.tau == other.tau
|
||||||
|
|
||||||
|
def __lt__(self, other):
|
||||||
|
return self.mu < other.mu
|
||||||
|
|
||||||
|
def __le__(self, other):
|
||||||
|
return self.mu <= other.mu
|
||||||
|
|
||||||
|
def __gt__(self, other):
|
||||||
|
return self.mu > other.mu
|
||||||
|
|
||||||
|
def __ge__(self, other):
|
||||||
|
return self.mu >= other.mu
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return 'N(mu={:.3f}, sigma={:.3f})'.format(self.mu, self.sigma)
|
||||||
|
|
||||||
|
def _repr_latex_(self):
|
||||||
|
latex = r'\mathcal{{ N }}( {:.3f}, {:.3f}^2 )'.format(self.mu, self.sigma)
|
||||||
|
return '$%s$' % latex
|
||||||
|
|
||||||
|
class Matrix(list):
|
||||||
|
def __init__(self, src, height=None, width=None):
|
||||||
|
if callable(src):
|
||||||
|
f, src = src, {}
|
||||||
|
size = [height, width]
|
||||||
|
if not height:
|
||||||
|
def set_height(height):
|
||||||
|
size[0] = height
|
||||||
|
size[0] = set_height
|
||||||
|
if not width:
|
||||||
|
def set_width(width):
|
||||||
|
size[1] = width
|
||||||
|
size[1] = set_width
|
||||||
|
try:
|
||||||
|
for (r, c), val in f(*size):
|
||||||
|
src[r, c] = val
|
||||||
|
except TypeError:
|
||||||
|
raise TypeError('A callable src must return an interable '
|
||||||
|
'which generates a tuple containing '
|
||||||
|
'coordinate and value')
|
||||||
|
height, width = tuple(size)
|
||||||
|
if height is None or width is None:
|
||||||
|
raise TypeError('A callable src must call set_height and '
|
||||||
|
'set_width if the size is non-deterministic')
|
||||||
|
if isinstance(src, list):
|
||||||
|
is_number = lambda x: isinstance(x, Number)
|
||||||
|
unique_col_sizes = set(map(len, src))
|
||||||
|
everything_are_number = filter(is_number, sum(src, []))
|
||||||
|
if len(unique_col_sizes) != 1 or not everything_are_number:
|
||||||
|
raise ValueError('src must be a rectangular array of numbers')
|
||||||
|
two_dimensional_array = src
|
||||||
|
elif isinstance(src, dict):
|
||||||
|
if not height or not width:
|
||||||
|
w = h = 0
|
||||||
|
for r, c in iterkeys(src):
|
||||||
|
if not height:
|
||||||
|
h = max(h, r + 1)
|
||||||
|
if not width:
|
||||||
|
w = max(w, c + 1)
|
||||||
|
if not height:
|
||||||
|
height = h
|
||||||
|
if not width:
|
||||||
|
width = w
|
||||||
|
two_dimensional_array = []
|
||||||
|
for r in range(height):
|
||||||
|
row = []
|
||||||
|
two_dimensional_array.append(row)
|
||||||
|
for c in range(width):
|
||||||
|
row.append(src.get((r, c), 0))
|
||||||
|
else:
|
||||||
|
raise TypeError('src must be a list or dict or callable')
|
||||||
|
super(Matrix, self).__init__(two_dimensional_array)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def height(self):
|
||||||
|
return len(self)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def width(self):
|
||||||
|
return len(self[0])
|
||||||
|
|
||||||
|
def transpose(self):
|
||||||
|
height, width = self.height, self.width
|
||||||
|
src = {}
|
||||||
|
for c in range(width):
|
||||||
|
for r in range(height):
|
||||||
|
src[c, r] = self[r][c]
|
||||||
|
return type(self)(src, height=width, width=height)
|
||||||
|
|
||||||
|
def minor(self, row_n, col_n):
|
||||||
|
height, width = self.height, self.width
|
||||||
|
if not (0 <= row_n < height):
|
||||||
|
raise ValueError('row_n should be between 0 and %d' % height)
|
||||||
|
elif not (0 <= col_n < width):
|
||||||
|
raise ValueError('col_n should be between 0 and %d' % width)
|
||||||
|
two_dimensional_array = []
|
||||||
|
for r in range(height):
|
||||||
|
if r == row_n:
|
||||||
|
continue
|
||||||
|
row = []
|
||||||
|
two_dimensional_array.append(row)
|
||||||
|
for c in range(width):
|
||||||
|
if c == col_n:
|
||||||
|
continue
|
||||||
|
row.append(self[r][c])
|
||||||
|
return type(self)(two_dimensional_array)
|
||||||
|
|
||||||
|
def determinant(self):
|
||||||
|
height, width = self.height, self.width
|
||||||
|
if height != width:
|
||||||
|
raise ValueError('Only square matrix can calculate a determinant')
|
||||||
|
tmp, rv = copy.deepcopy(self), 1.
|
||||||
|
for c in range(width - 1, 0, -1):
|
||||||
|
pivot, r = max((abs(tmp[r][c]), r) for r in range(c + 1))
|
||||||
|
pivot = tmp[r][c]
|
||||||
|
if not pivot:
|
||||||
|
return 0.
|
||||||
|
tmp[r], tmp[c] = tmp[c], tmp[r]
|
||||||
|
if r != c:
|
||||||
|
rv = -rv
|
||||||
|
rv *= pivot
|
||||||
|
fact = -1. / pivot
|
||||||
|
for r in range(c):
|
||||||
|
f = fact * tmp[r][c]
|
||||||
|
for x in range(c):
|
||||||
|
tmp[r][x] += f * tmp[c][x]
|
||||||
|
return rv * tmp[0][0]
|
||||||
|
|
||||||
|
def adjugate(self):
|
||||||
|
height, width = self.height, self.width
|
||||||
|
if height != width:
|
||||||
|
raise ValueError('Only square matrix can be adjugated')
|
||||||
|
if height == 2:
|
||||||
|
a, b = self[0][0], self[0][1]
|
||||||
|
c, d = self[1][0], self[1][1]
|
||||||
|
return type(self)([[d, -b], [-c, a]])
|
||||||
|
src = {}
|
||||||
|
for r in range(height):
|
||||||
|
for c in range(width):
|
||||||
|
sign = -1 if (r + c) % 2 else 1
|
||||||
|
src[r, c] = self.minor(r, c).determinant() * sign
|
||||||
|
return type(self)(src, height, width)
|
||||||
|
|
||||||
|
def inverse(self):
|
||||||
|
if self.height == self.width == 1:
|
||||||
|
return type(self)([[1. / self[0][0]]])
|
||||||
|
return (1. / self.determinant()) * self.adjugate()
|
||||||
|
|
||||||
|
def __add__(self, other):
|
||||||
|
height, width = self.height, self.width
|
||||||
|
if (height, width) != (other.height, other.width):
|
||||||
|
raise ValueError('Must be same size')
|
||||||
|
src = {}
|
||||||
|
for r in range(height):
|
||||||
|
for c in range(width):
|
||||||
|
src[r, c] = self[r][c] + other[r][c]
|
||||||
|
return type(self)(src, height, width)
|
||||||
|
|
||||||
|
def __mul__(self, other):
|
||||||
|
if self.width != other.height:
|
||||||
|
raise ValueError('Bad size')
|
||||||
|
height, width = self.height, other.width
|
||||||
|
src = {}
|
||||||
|
for r in range(height):
|
||||||
|
for c in range(width):
|
||||||
|
src[r, c] = sum(self[r][x] * other[x][c]
|
||||||
|
for x in range(self.width))
|
||||||
|
return type(self)(src, height, width)
|
||||||
|
|
||||||
|
def __rmul__(self, other):
|
||||||
|
if not isinstance(other, Number):
|
||||||
|
raise TypeError('The operand should be a number')
|
||||||
|
height, width = self.height, self.width
|
||||||
|
src = {}
|
||||||
|
for r in range(height):
|
||||||
|
for c in range(width):
|
||||||
|
src[r, c] = other * self[r][c]
|
||||||
|
return type(self)(src, height, width)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return '{}({})'.format(type(self).__name__, super(Matrix, self).__repr__())
|
||||||
|
|
||||||
|
def _repr_latex_(self):
|
||||||
|
rows = [' && '.join(['%.3f' % cell for cell in row]) for row in self]
|
||||||
|
latex = r'\begin{matrix} %s \end{matrix}' % r'\\'.join(rows)
|
||||||
|
return '$%s$' % latex
|
||||||
|
|
||||||
|
def _gen_erfcinv(erfc, math=math):
|
||||||
|
def erfcinv(y):
|
||||||
|
"""The inverse function of erfc."""
|
||||||
|
if y >= 2:
|
||||||
|
return -100.
|
||||||
|
elif y <= 0:
|
||||||
|
return 100.
|
||||||
|
zero_point = y < 1
|
||||||
|
if not zero_point:
|
||||||
|
y = 2 - y
|
||||||
|
t = math.sqrt(-2 * math.log(y / 2.))
|
||||||
|
x = -0.70711 * \
|
||||||
|
((2.30753 + t * 0.27061) / (1. + t * (0.99229 + t * 0.04481)) - t)
|
||||||
|
for i in range(2):
|
||||||
|
err = erfc(x) - y
|
||||||
|
x += err / (1.12837916709551257 * math.exp(-(x ** 2)) - x * err)
|
||||||
|
return x if zero_point else -x
|
||||||
|
return erfcinv
|
||||||
|
|
||||||
|
def _gen_ppf(erfc, math=math):
|
||||||
|
erfcinv = _gen_erfcinv(erfc, math)
|
||||||
|
def ppf(x, mu=0, sigma=1):
|
||||||
|
return mu - sigma * math.sqrt(2) * erfcinv(2 * x)
|
||||||
|
return ppf
|
||||||
|
|
||||||
|
def erfc(x):
|
||||||
|
z = abs(x)
|
||||||
|
t = 1. / (1. + z / 2.)
|
||||||
|
r = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
|
||||||
|
0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
|
||||||
|
0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
|
||||||
|
-0.82215223 + t * 0.17087277
|
||||||
|
)))
|
||||||
|
)))
|
||||||
|
)))
|
||||||
|
return 2. - r if x < 0 else r
|
||||||
|
|
||||||
|
def cdf(x, mu=0, sigma=1):
|
||||||
|
return 0.5 * erfc(-(x - mu) / (sigma * math.sqrt(2)))
|
||||||
|
|
||||||
|
|
||||||
|
def pdf(x, mu=0, sigma=1):
|
||||||
|
return (1 / math.sqrt(2 * math.pi) * abs(sigma) *
|
||||||
|
math.exp(-(((x - mu) / abs(sigma)) ** 2 / 2)))
|
||||||
|
|
||||||
|
ppf = _gen_ppf(erfc)
|
||||||
|
|
||||||
|
def choose_backend(backend):
|
||||||
|
if backend is None: # fallback
|
||||||
|
return cdf, pdf, ppf
|
||||||
|
elif backend == 'mpmath':
|
||||||
|
try:
|
||||||
|
import mpmath
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError('Install "mpmath" to use this backend')
|
||||||
|
return mpmath.ncdf, mpmath.npdf, _gen_ppf(mpmath.erfc, math=mpmath)
|
||||||
|
elif backend == 'scipy':
|
||||||
|
try:
|
||||||
|
from scipy.stats import norm
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError('Install "scipy" to use this backend')
|
||||||
|
return norm.cdf, norm.pdf, norm.ppf
|
||||||
|
raise ValueError('%r backend is not defined' % backend)
|
||||||
|
|
||||||
|
def available_backends():
|
||||||
|
backends = [None]
|
||||||
|
for backend in ['mpmath', 'scipy']:
|
||||||
|
try:
|
||||||
|
__import__(backend)
|
||||||
|
except ImportError:
|
||||||
|
continue
|
||||||
|
backends.append(backend)
|
||||||
|
return backends
|
||||||
|
|
||||||
|
class Node(object):
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
class Variable(Node, Gaussian):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.messages = {}
|
||||||
|
super(Variable, self).__init__()
|
||||||
|
|
||||||
|
def set(self, val):
|
||||||
|
delta = self.delta(val)
|
||||||
|
self.pi, self.tau = val.pi, val.tau
|
||||||
|
return delta
|
||||||
|
|
||||||
|
def delta(self, other):
|
||||||
|
pi_delta = abs(self.pi - other.pi)
|
||||||
|
if pi_delta == inf:
|
||||||
|
return 0.
|
||||||
|
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
|
||||||
|
|
||||||
|
def update_message(self, factor, pi=0, tau=0, message=None):
|
||||||
|
message = message or Gaussian(pi=pi, tau=tau)
|
||||||
|
old_message, self[factor] = self[factor], message
|
||||||
|
return self.set(self / old_message * message)
|
||||||
|
|
||||||
|
def update_value(self, factor, pi=0, tau=0, value=None):
|
||||||
|
value = value or Gaussian(pi=pi, tau=tau)
|
||||||
|
old_message = self[factor]
|
||||||
|
self[factor] = value * old_message / self
|
||||||
|
return self.set(value)
|
||||||
|
|
||||||
|
def __getitem__(self, factor):
|
||||||
|
return self.messages[factor]
|
||||||
|
|
||||||
|
def __setitem__(self, factor, message):
|
||||||
|
self.messages[factor] = message
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
args = (type(self).__name__, super(Variable, self).__repr__(),
|
||||||
|
len(self.messages), '' if len(self.messages) == 1 else 's')
|
||||||
|
return '<%s %s with %d connection%s>' % args
|
||||||
|
|
||||||
|
|
||||||
|
class Factor(Node):
|
||||||
|
|
||||||
|
def __init__(self, variables):
|
||||||
|
self.vars = variables
|
||||||
|
for var in variables:
|
||||||
|
var[self] = Gaussian()
|
||||||
|
|
||||||
|
def down(self):
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def up(self):
|
||||||
|
return 0
|
||||||
|
|
||||||
|
@property
|
||||||
|
def var(self):
|
||||||
|
assert len(self.vars) == 1
|
||||||
|
return self.vars[0]
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
args = (type(self).__name__, len(self.vars),
|
||||||
|
'' if len(self.vars) == 1 else 's')
|
||||||
|
return '<%s with %d connection%s>' % args
|
||||||
|
|
||||||
|
|
||||||
|
class PriorFactor(Factor):
|
||||||
|
|
||||||
|
def __init__(self, var, val, dynamic=0):
|
||||||
|
super(PriorFactor, self).__init__([var])
|
||||||
|
self.val = val
|
||||||
|
self.dynamic = dynamic
|
||||||
|
|
||||||
|
def down(self):
|
||||||
|
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
|
||||||
|
value = Gaussian(self.val.mu, sigma)
|
||||||
|
return self.var.update_value(self, value=value)
|
||||||
|
|
||||||
|
|
||||||
|
class LikelihoodFactor(Factor):
|
||||||
|
|
||||||
|
def __init__(self, mean_var, value_var, variance):
|
||||||
|
super(LikelihoodFactor, self).__init__([mean_var, value_var])
|
||||||
|
self.mean = mean_var
|
||||||
|
self.value = value_var
|
||||||
|
self.variance = variance
|
||||||
|
|
||||||
|
def calc_a(self, var):
|
||||||
|
return 1. / (1. + self.variance * var.pi)
|
||||||
|
|
||||||
|
def down(self):
|
||||||
|
# update value.
|
||||||
|
msg = self.mean / self.mean[self]
|
||||||
|
a = self.calc_a(msg)
|
||||||
|
return self.value.update_message(self, a * msg.pi, a * msg.tau)
|
||||||
|
|
||||||
|
def up(self):
|
||||||
|
# update mean.
|
||||||
|
msg = self.value / self.value[self]
|
||||||
|
a = self.calc_a(msg)
|
||||||
|
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
|
||||||
|
|
||||||
|
|
||||||
|
class SumFactor(Factor):
|
||||||
|
|
||||||
|
def __init__(self, sum_var, term_vars, coeffs):
|
||||||
|
super(SumFactor, self).__init__([sum_var] + term_vars)
|
||||||
|
self.sum = sum_var
|
||||||
|
self.terms = term_vars
|
||||||
|
self.coeffs = coeffs
|
||||||
|
|
||||||
|
def down(self):
|
||||||
|
vals = self.terms
|
||||||
|
msgs = [var[self] for var in vals]
|
||||||
|
return self.update(self.sum, vals, msgs, self.coeffs)
|
||||||
|
|
||||||
|
def up(self, index=0):
|
||||||
|
coeff = self.coeffs[index]
|
||||||
|
coeffs = []
|
||||||
|
for x, c in enumerate(self.coeffs):
|
||||||
|
try:
|
||||||
|
if x == index:
|
||||||
|
coeffs.append(1. / coeff)
|
||||||
|
else:
|
||||||
|
coeffs.append(-c / coeff)
|
||||||
|
except ZeroDivisionError:
|
||||||
|
coeffs.append(0.)
|
||||||
|
vals = self.terms[:]
|
||||||
|
vals[index] = self.sum
|
||||||
|
msgs = [var[self] for var in vals]
|
||||||
|
return self.update(self.terms[index], vals, msgs, coeffs)
|
||||||
|
|
||||||
|
def update(self, var, vals, msgs, coeffs):
|
||||||
|
pi_inv = 0
|
||||||
|
mu = 0
|
||||||
|
for val, msg, coeff in zip(vals, msgs, coeffs):
|
||||||
|
div = val / msg
|
||||||
|
mu += coeff * div.mu
|
||||||
|
if pi_inv == inf:
|
||||||
|
continue
|
||||||
|
try:
|
||||||
|
# numpy.float64 handles floating-point error by different way.
|
||||||
|
# For example, it can just warn RuntimeWarning on n/0 problem
|
||||||
|
# instead of throwing ZeroDivisionError. So div.pi, the
|
||||||
|
# denominator has to be a built-in float.
|
||||||
|
pi_inv += coeff ** 2 / float(div.pi)
|
||||||
|
except ZeroDivisionError:
|
||||||
|
pi_inv = inf
|
||||||
|
pi = 1. / pi_inv
|
||||||
|
tau = pi * mu
|
||||||
|
return var.update_message(self, pi, tau)
|
||||||
|
|
||||||
|
|
||||||
|
class TruncateFactor(Factor):
|
||||||
|
|
||||||
|
def __init__(self, var, v_func, w_func, draw_margin):
|
||||||
|
super(TruncateFactor, self).__init__([var])
|
||||||
|
self.v_func = v_func
|
||||||
|
self.w_func = w_func
|
||||||
|
self.draw_margin = draw_margin
|
||||||
|
|
||||||
|
def up(self):
|
||||||
|
val = self.var
|
||||||
|
msg = self.var[self]
|
||||||
|
div = val / msg
|
||||||
|
sqrt_pi = math.sqrt(div.pi)
|
||||||
|
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
|
||||||
|
v = self.v_func(*args)
|
||||||
|
w = self.w_func(*args)
|
||||||
|
denom = (1. - w)
|
||||||
|
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
|
||||||
|
return val.update_value(self, pi, tau)
|
||||||
|
|
||||||
|
#: Default initial mean of ratings.
|
||||||
|
MU = 25.
|
||||||
|
#: Default initial standard deviation of ratings.
|
||||||
|
SIGMA = MU / 3
|
||||||
|
#: Default distance that guarantees about 76% chance of winning.
|
||||||
|
BETA = SIGMA / 2
|
||||||
|
#: Default dynamic factor.
|
||||||
|
TAU = SIGMA / 100
|
||||||
|
#: Default draw probability of the game.
|
||||||
|
DRAW_PROBABILITY = .10
|
||||||
|
#: A basis to check reliability of the result.
|
||||||
|
DELTA = 0.0001
|
||||||
|
|
||||||
|
|
||||||
|
def calc_draw_probability(draw_margin, size, env=None):
|
||||||
|
if env is None:
|
||||||
|
env = global_env()
|
||||||
|
return 2 * env.cdf(draw_margin / (math.sqrt(size) * env.beta)) - 1
|
||||||
|
|
||||||
|
|
||||||
|
def calc_draw_margin(draw_probability, size, env=None):
|
||||||
|
if env is None:
|
||||||
|
env = global_env()
|
||||||
|
return env.ppf((draw_probability + 1) / 2.) * math.sqrt(size) * env.beta
|
||||||
|
|
||||||
|
|
||||||
|
def _team_sizes(rating_groups):
|
||||||
|
team_sizes = [0]
|
||||||
|
for group in rating_groups:
|
||||||
|
team_sizes.append(len(group) + team_sizes[-1])
|
||||||
|
del team_sizes[0]
|
||||||
|
return team_sizes
|
||||||
|
|
||||||
|
|
||||||
|
def _floating_point_error(env):
|
||||||
|
if env.backend == 'mpmath':
|
||||||
|
msg = 'Set "mpmath.mp.dps" to higher'
|
||||||
|
else:
|
||||||
|
msg = 'Cannot calculate correctly, set backend to "mpmath"'
|
||||||
|
return FloatingPointError(msg)
|
||||||
|
|
||||||
|
|
||||||
|
class Rating(Gaussian):
|
||||||
|
def __init__(self, mu=None, sigma=None):
|
||||||
|
if isinstance(mu, tuple):
|
||||||
|
mu, sigma = mu
|
||||||
|
elif isinstance(mu, Gaussian):
|
||||||
|
mu, sigma = mu.mu, mu.sigma
|
||||||
|
if mu is None:
|
||||||
|
mu = global_env().mu
|
||||||
|
if sigma is None:
|
||||||
|
sigma = global_env().sigma
|
||||||
|
super(Rating, self).__init__(mu, sigma)
|
||||||
|
|
||||||
|
def __int__(self):
|
||||||
|
return int(self.mu)
|
||||||
|
|
||||||
|
def __long__(self):
|
||||||
|
return long(self.mu)
|
||||||
|
|
||||||
|
def __float__(self):
|
||||||
|
return float(self.mu)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return iter((self.mu, self.sigma))
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
c = type(self)
|
||||||
|
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma)
|
||||||
|
return '%s(mu=%.3f, sigma=%.3f)' % args
|
||||||
|
|
||||||
|
|
||||||
|
class TrueSkill(object):
|
||||||
|
def __init__(self, mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
|
||||||
|
draw_probability=DRAW_PROBABILITY, backend=None):
|
||||||
|
self.mu = mu
|
||||||
|
self.sigma = sigma
|
||||||
|
self.beta = beta
|
||||||
|
self.tau = tau
|
||||||
|
self.draw_probability = draw_probability
|
||||||
|
self.backend = backend
|
||||||
|
if isinstance(backend, tuple):
|
||||||
|
self.cdf, self.pdf, self.ppf = backend
|
||||||
|
else:
|
||||||
|
self.cdf, self.pdf, self.ppf = choose_backend(backend)
|
||||||
|
|
||||||
|
def create_rating(self, mu=None, sigma=None):
|
||||||
|
if mu is None:
|
||||||
|
mu = self.mu
|
||||||
|
if sigma is None:
|
||||||
|
sigma = self.sigma
|
||||||
|
return Rating(mu, sigma)
|
||||||
|
|
||||||
|
def v_win(self, diff, draw_margin):
|
||||||
|
x = diff - draw_margin
|
||||||
|
denom = self.cdf(x)
|
||||||
|
return (self.pdf(x) / denom) if denom else -x
|
||||||
|
|
||||||
|
def v_draw(self, diff, draw_margin):
|
||||||
|
abs_diff = abs(diff)
|
||||||
|
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
|
||||||
|
denom = self.cdf(a) - self.cdf(b)
|
||||||
|
numer = self.pdf(b) - self.pdf(a)
|
||||||
|
return ((numer / denom) if denom else a) * (-1 if diff < 0 else +1)
|
||||||
|
|
||||||
|
def w_win(self, diff, draw_margin):
|
||||||
|
x = diff - draw_margin
|
||||||
|
v = self.v_win(diff, draw_margin)
|
||||||
|
w = v * (v + x)
|
||||||
|
if 0 < w < 1:
|
||||||
|
return w
|
||||||
|
raise _floating_point_error(self)
|
||||||
|
|
||||||
|
def w_draw(self, diff, draw_margin):
|
||||||
|
abs_diff = abs(diff)
|
||||||
|
a, b = draw_margin - abs_diff, -draw_margin - abs_diff
|
||||||
|
denom = self.cdf(a) - self.cdf(b)
|
||||||
|
if not denom:
|
||||||
|
raise _floating_point_error(self)
|
||||||
|
v = self.v_draw(abs_diff, draw_margin)
|
||||||
|
return (v ** 2) + (a * self.pdf(a) - b * self.pdf(b)) / denom
|
||||||
|
|
||||||
|
def validate_rating_groups(self, rating_groups):
|
||||||
|
# check group sizes
|
||||||
|
if len(rating_groups) < 2:
|
||||||
|
raise ValueError('Need multiple rating groups')
|
||||||
|
elif not all(rating_groups):
|
||||||
|
raise ValueError('Each group must contain multiple ratings')
|
||||||
|
# check group types
|
||||||
|
group_types = set(map(type, rating_groups))
|
||||||
|
if len(group_types) != 1:
|
||||||
|
raise TypeError('All groups should be same type')
|
||||||
|
elif group_types.pop() is Rating:
|
||||||
|
raise TypeError('Rating cannot be a rating group')
|
||||||
|
# normalize rating_groups
|
||||||
|
if isinstance(rating_groups[0], dict):
|
||||||
|
dict_rating_groups = rating_groups
|
||||||
|
rating_groups = []
|
||||||
|
keys = []
|
||||||
|
for dict_rating_group in dict_rating_groups:
|
||||||
|
rating_group, key_group = [], []
|
||||||
|
for key, rating in iteritems(dict_rating_group):
|
||||||
|
rating_group.append(rating)
|
||||||
|
key_group.append(key)
|
||||||
|
rating_groups.append(tuple(rating_group))
|
||||||
|
keys.append(tuple(key_group))
|
||||||
|
else:
|
||||||
|
rating_groups = list(rating_groups)
|
||||||
|
keys = None
|
||||||
|
return rating_groups, keys
|
||||||
|
|
||||||
|
def validate_weights(self, weights, rating_groups, keys=None):
|
||||||
|
if weights is None:
|
||||||
|
weights = [(1,) * len(g) for g in rating_groups]
|
||||||
|
elif isinstance(weights, dict):
|
||||||
|
weights_dict, weights = weights, []
|
||||||
|
for x, group in enumerate(rating_groups):
|
||||||
|
w = []
|
||||||
|
weights.append(w)
|
||||||
|
for y, rating in enumerate(group):
|
||||||
|
if keys is not None:
|
||||||
|
y = keys[x][y]
|
||||||
|
w.append(weights_dict.get((x, y), 1))
|
||||||
|
return weights
|
||||||
|
|
||||||
|
def factor_graph_builders(self, rating_groups, ranks, weights):
|
||||||
|
flatten_ratings = sum(map(tuple, rating_groups), ())
|
||||||
|
flatten_weights = sum(map(tuple, weights), ())
|
||||||
|
size = len(flatten_ratings)
|
||||||
|
group_size = len(rating_groups)
|
||||||
|
# create variables
|
||||||
|
rating_vars = [Variable() for x in range(size)]
|
||||||
|
perf_vars = [Variable() for x in range(size)]
|
||||||
|
team_perf_vars = [Variable() for x in range(group_size)]
|
||||||
|
team_diff_vars = [Variable() for x in range(group_size - 1)]
|
||||||
|
team_sizes = _team_sizes(rating_groups)
|
||||||
|
# layer builders
|
||||||
|
def build_rating_layer():
|
||||||
|
for rating_var, rating in zip(rating_vars, flatten_ratings):
|
||||||
|
yield PriorFactor(rating_var, rating, self.tau)
|
||||||
|
def build_perf_layer():
|
||||||
|
for rating_var, perf_var in zip(rating_vars, perf_vars):
|
||||||
|
yield LikelihoodFactor(rating_var, perf_var, self.beta ** 2)
|
||||||
|
def build_team_perf_layer():
|
||||||
|
for team, team_perf_var in enumerate(team_perf_vars):
|
||||||
|
if team > 0:
|
||||||
|
start = team_sizes[team - 1]
|
||||||
|
else:
|
||||||
|
start = 0
|
||||||
|
end = team_sizes[team]
|
||||||
|
child_perf_vars = perf_vars[start:end]
|
||||||
|
coeffs = flatten_weights[start:end]
|
||||||
|
yield SumFactor(team_perf_var, child_perf_vars, coeffs)
|
||||||
|
def build_team_diff_layer():
|
||||||
|
for team, team_diff_var in enumerate(team_diff_vars):
|
||||||
|
yield SumFactor(team_diff_var,
|
||||||
|
team_perf_vars[team:team + 2], [+1, -1])
|
||||||
|
def build_trunc_layer():
|
||||||
|
for x, team_diff_var in enumerate(team_diff_vars):
|
||||||
|
if callable(self.draw_probability):
|
||||||
|
# dynamic draw probability
|
||||||
|
team_perf1, team_perf2 = team_perf_vars[x:x + 2]
|
||||||
|
args = (Rating(team_perf1), Rating(team_perf2), self)
|
||||||
|
draw_probability = self.draw_probability(*args)
|
||||||
|
else:
|
||||||
|
# static draw probability
|
||||||
|
draw_probability = self.draw_probability
|
||||||
|
size = sum(map(len, rating_groups[x:x + 2]))
|
||||||
|
draw_margin = calc_draw_margin(draw_probability, size, self)
|
||||||
|
if ranks[x] == ranks[x + 1]: # is a tie?
|
||||||
|
v_func, w_func = self.v_draw, self.w_draw
|
||||||
|
else:
|
||||||
|
v_func, w_func = self.v_win, self.w_win
|
||||||
|
yield TruncateFactor(team_diff_var,
|
||||||
|
v_func, w_func, draw_margin)
|
||||||
|
# build layers
|
||||||
|
return (build_rating_layer, build_perf_layer, build_team_perf_layer,
|
||||||
|
build_team_diff_layer, build_trunc_layer)
|
||||||
|
|
||||||
|
def run_schedule(self, build_rating_layer, build_perf_layer,
|
||||||
|
build_team_perf_layer, build_team_diff_layer,
|
||||||
|
build_trunc_layer, min_delta=DELTA):
|
||||||
|
if min_delta <= 0:
|
||||||
|
raise ValueError('min_delta must be greater than 0')
|
||||||
|
layers = []
|
||||||
|
def build(builders):
|
||||||
|
layers_built = [list(build()) for build in builders]
|
||||||
|
layers.extend(layers_built)
|
||||||
|
return layers_built
|
||||||
|
# gray arrows
|
||||||
|
layers_built = build([build_rating_layer,
|
||||||
|
build_perf_layer,
|
||||||
|
build_team_perf_layer])
|
||||||
|
rating_layer, perf_layer, team_perf_layer = layers_built
|
||||||
|
for f in chain(*layers_built):
|
||||||
|
f.down()
|
||||||
|
# arrow #1, #2, #3
|
||||||
|
team_diff_layer, trunc_layer = build([build_team_diff_layer,
|
||||||
|
build_trunc_layer])
|
||||||
|
team_diff_len = len(team_diff_layer)
|
||||||
|
for x in range(10):
|
||||||
|
if team_diff_len == 1:
|
||||||
|
# only two teams
|
||||||
|
team_diff_layer[0].down()
|
||||||
|
delta = trunc_layer[0].up()
|
||||||
|
else:
|
||||||
|
# multiple teams
|
||||||
|
delta = 0
|
||||||
|
for x in range(team_diff_len - 1):
|
||||||
|
team_diff_layer[x].down()
|
||||||
|
delta = max(delta, trunc_layer[x].up())
|
||||||
|
team_diff_layer[x].up(1) # up to right variable
|
||||||
|
for x in range(team_diff_len - 1, 0, -1):
|
||||||
|
team_diff_layer[x].down()
|
||||||
|
delta = max(delta, trunc_layer[x].up())
|
||||||
|
team_diff_layer[x].up(0) # up to left variable
|
||||||
|
# repeat until to small update
|
||||||
|
if delta <= min_delta:
|
||||||
|
break
|
||||||
|
# up both ends
|
||||||
|
team_diff_layer[0].up(0)
|
||||||
|
team_diff_layer[team_diff_len - 1].up(1)
|
||||||
|
# up the remainder of the black arrows
|
||||||
|
for f in team_perf_layer:
|
||||||
|
for x in range(len(f.vars) - 1):
|
||||||
|
f.up(x)
|
||||||
|
for f in perf_layer:
|
||||||
|
f.up()
|
||||||
|
return layers
|
||||||
|
|
||||||
|
def rate(self, rating_groups, ranks=None, weights=None, min_delta=DELTA):
|
||||||
|
rating_groups, keys = self.validate_rating_groups(rating_groups)
|
||||||
|
weights = self.validate_weights(weights, rating_groups, keys)
|
||||||
|
group_size = len(rating_groups)
|
||||||
|
if ranks is None:
|
||||||
|
ranks = range(group_size)
|
||||||
|
elif len(ranks) != group_size:
|
||||||
|
raise ValueError('Wrong ranks')
|
||||||
|
# sort rating groups by rank
|
||||||
|
by_rank = lambda x: x[1][1]
|
||||||
|
sorting = sorted(enumerate(zip(rating_groups, ranks, weights)),
|
||||||
|
key=by_rank)
|
||||||
|
sorted_rating_groups, sorted_ranks, sorted_weights = [], [], []
|
||||||
|
for x, (g, r, w) in sorting:
|
||||||
|
sorted_rating_groups.append(g)
|
||||||
|
sorted_ranks.append(r)
|
||||||
|
# make weights to be greater than 0
|
||||||
|
sorted_weights.append(max(min_delta, w_) for w_ in w)
|
||||||
|
# build factor graph
|
||||||
|
args = (sorted_rating_groups, sorted_ranks, sorted_weights)
|
||||||
|
builders = self.factor_graph_builders(*args)
|
||||||
|
args = builders + (min_delta,)
|
||||||
|
layers = self.run_schedule(*args)
|
||||||
|
# make result
|
||||||
|
rating_layer, team_sizes = layers[0], _team_sizes(sorted_rating_groups)
|
||||||
|
transformed_groups = []
|
||||||
|
for start, end in zip([0] + team_sizes[:-1], team_sizes):
|
||||||
|
group = []
|
||||||
|
for f in rating_layer[start:end]:
|
||||||
|
group.append(Rating(float(f.var.mu), float(f.var.sigma)))
|
||||||
|
transformed_groups.append(tuple(group))
|
||||||
|
by_hint = lambda x: x[0]
|
||||||
|
unsorting = sorted(zip((x for x, __ in sorting), transformed_groups),
|
||||||
|
key=by_hint)
|
||||||
|
if keys is None:
|
||||||
|
return [g for x, g in unsorting]
|
||||||
|
# restore the structure with input dictionary keys
|
||||||
|
return [dict(zip(keys[x], g)) for x, g in unsorting]
|
||||||
|
|
||||||
|
def quality(self, rating_groups, weights=None):
|
||||||
|
rating_groups, keys = self.validate_rating_groups(rating_groups)
|
||||||
|
weights = self.validate_weights(weights, rating_groups, keys)
|
||||||
|
flatten_ratings = sum(map(tuple, rating_groups), ())
|
||||||
|
flatten_weights = sum(map(tuple, weights), ())
|
||||||
|
length = len(flatten_ratings)
|
||||||
|
# a vector of all of the skill means
|
||||||
|
mean_matrix = Matrix([[r.mu] for r in flatten_ratings])
|
||||||
|
# a matrix whose diagonal values are the variances (sigma ** 2) of each
|
||||||
|
# of the players.
|
||||||
|
def variance_matrix(height, width):
|
||||||
|
variances = (r.sigma ** 2 for r in flatten_ratings)
|
||||||
|
for x, variance in enumerate(variances):
|
||||||
|
yield (x, x), variance
|
||||||
|
variance_matrix = Matrix(variance_matrix, length, length)
|
||||||
|
# the player-team assignment and comparison matrix
|
||||||
|
def rotated_a_matrix(set_height, set_width):
|
||||||
|
t = 0
|
||||||
|
for r, (cur, _next) in enumerate(zip(rating_groups[:-1],
|
||||||
|
rating_groups[1:])):
|
||||||
|
for x in range(t, t + len(cur)):
|
||||||
|
yield (r, x), flatten_weights[x]
|
||||||
|
t += 1
|
||||||
|
x += 1
|
||||||
|
for x in range(x, x + len(_next)):
|
||||||
|
yield (r, x), -flatten_weights[x]
|
||||||
|
set_height(r + 1)
|
||||||
|
set_width(x + 1)
|
||||||
|
rotated_a_matrix = Matrix(rotated_a_matrix)
|
||||||
|
a_matrix = rotated_a_matrix.transpose()
|
||||||
|
# match quality further derivation
|
||||||
|
_ata = (self.beta ** 2) * rotated_a_matrix * a_matrix
|
||||||
|
_atsa = rotated_a_matrix * variance_matrix * a_matrix
|
||||||
|
start = mean_matrix.transpose() * a_matrix
|
||||||
|
middle = _ata + _atsa
|
||||||
|
end = rotated_a_matrix * mean_matrix
|
||||||
|
# make result
|
||||||
|
e_arg = (-0.5 * start * middle.inverse() * end).determinant()
|
||||||
|
s_arg = _ata.determinant() / middle.determinant()
|
||||||
|
return math.exp(e_arg) * math.sqrt(s_arg)
|
||||||
|
|
||||||
|
def expose(self, rating):
|
||||||
|
k = self.mu / self.sigma
|
||||||
|
return rating.mu - k * rating.sigma
|
||||||
|
|
||||||
|
def make_as_global(self):
|
||||||
|
return setup(env=self)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
c = type(self)
|
||||||
|
if callable(self.draw_probability):
|
||||||
|
f = self.draw_probability
|
||||||
|
draw_probability = '.'.join([f.__module__, f.__name__])
|
||||||
|
else:
|
||||||
|
draw_probability = '%.1f%%' % (self.draw_probability * 100)
|
||||||
|
if self.backend is None:
|
||||||
|
backend = ''
|
||||||
|
elif isinstance(self.backend, tuple):
|
||||||
|
backend = ', backend=...'
|
||||||
|
else:
|
||||||
|
backend = ', backend=%r' % self.backend
|
||||||
|
args = ('.'.join([c.__module__, c.__name__]), self.mu, self.sigma,
|
||||||
|
self.beta, self.tau, draw_probability, backend)
|
||||||
|
return ('%s(mu=%.3f, sigma=%.3f, beta=%.3f, tau=%.3f, '
|
||||||
|
'draw_probability=%s%s)' % args)
|
||||||
|
|
||||||
|
|
||||||
|
def rate_1vs1(rating1, rating2, drawn=False, min_delta=DELTA, env=None):
|
||||||
|
if env is None:
|
||||||
|
env = global_env()
|
||||||
|
ranks = [0, 0 if drawn else 1]
|
||||||
|
teams = env.rate([(rating1,), (rating2,)], ranks, min_delta=min_delta)
|
||||||
|
return teams[0][0], teams[1][0]
|
||||||
|
|
||||||
|
|
||||||
|
def quality_1vs1(rating1, rating2, env=None):
|
||||||
|
if env is None:
|
||||||
|
env = global_env()
|
||||||
|
return env.quality([(rating1,), (rating2,)])
|
||||||
|
|
||||||
|
|
||||||
|
def global_env():
|
||||||
|
try:
|
||||||
|
global_env.__trueskill__
|
||||||
|
except AttributeError:
|
||||||
|
# setup the default environment
|
||||||
|
setup()
|
||||||
|
return global_env.__trueskill__
|
||||||
|
|
||||||
|
|
||||||
|
def setup(mu=MU, sigma=SIGMA, beta=BETA, tau=TAU,
|
||||||
|
draw_probability=DRAW_PROBABILITY, backend=None, env=None):
|
||||||
|
if env is None:
|
||||||
|
env = TrueSkill(mu, sigma, beta, tau, draw_probability, backend)
|
||||||
|
global_env.__trueskill__ = env
|
||||||
|
return env
|
||||||
|
|
||||||
|
|
||||||
|
def rate(rating_groups, ranks=None, weights=None, min_delta=DELTA):
|
||||||
|
return global_env().rate(rating_groups, ranks, weights, min_delta)
|
||||||
|
|
||||||
|
|
||||||
|
def quality(rating_groups, weights=None):
|
||||||
|
return global_env().quality(rating_groups, weights)
|
||||||
|
|
||||||
|
|
||||||
|
def expose(rating):
|
||||||
|
return global_env().expose(rating)
|
@ -0,0 +1,34 @@
|
|||||||
|
# Titan Robotics Team 2022: Visualization Module
|
||||||
|
# Written by Arthur Lu & Jacob Levine
|
||||||
|
# Notes:
|
||||||
|
# this should be imported as a python module using 'import visualization'
|
||||||
|
# this should be included in the local directory or environment variable
|
||||||
|
# fancy
|
||||||
|
# setup:
|
||||||
|
|
||||||
|
__version__ = "1.0.0.000"
|
||||||
|
|
||||||
|
#changelog should be viewed using print(analysis.__changelog__)
|
||||||
|
__changelog__ = """changelog:
|
||||||
|
1.0.0.000:
|
||||||
|
- created visualization.py
|
||||||
|
- added graphloss()
|
||||||
|
- added imports
|
||||||
|
"""
|
||||||
|
|
||||||
|
__author__ = (
|
||||||
|
"Arthur Lu <arthurlu@ttic.edu>,"
|
||||||
|
"Jacob Levine <jlevine@ttic.edu>,"
|
||||||
|
)
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'graphloss',
|
||||||
|
]
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
def graphloss(losses):
|
||||||
|
|
||||||
|
x = range(0, len(losses))
|
||||||
|
plt.plot(x, losses)
|
||||||
|
plt.show()
|
BIN
data analysis/analysis-master/dist/analysis-1.0.0.0-py3-none-any.whl
vendored
Normal file
BIN
data analysis/analysis-master/dist/analysis-1.0.0.0-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
data analysis/analysis-master/dist/analysis-1.0.0.0.tar.gz
vendored
Normal file
BIN
data analysis/analysis-master/dist/analysis-1.0.0.0.tar.gz
vendored
Normal file
Binary file not shown.
@ -57,10 +57,6 @@ __all__ = [
|
|||||||
|
|
||||||
from analysis import analysis as an
|
from analysis import analysis as an
|
||||||
import data as d
|
import data as d
|
||||||
try:
|
|
||||||
from analysis import trueskill as Trueskill
|
|
||||||
except:
|
|
||||||
import trueskill as Trueskilll
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
while(True):
|
while(True):
|
||||||
|
Loading…
Reference in New Issue
Block a user