commit-2018/11/14@15:49CST

This commit is contained in:
ltcptgeneral 2018-11-14 15:48:49 -06:00
parent f665a68245
commit 5fe5e5026c
10 changed files with 1942 additions and 72 deletions

Binary file not shown.

Binary file not shown.

View File

@ -1,19 +1,119 @@
#Titan Robotics Team 2022: Data Analysis Module
#Written by Arthur Lu & Jacob Levine
#Notes:
# this should be imported as a python module using 'import analysis'
# this should be included in the local directory or environment variable
# this module has not been optimized for multhreaded computing
#Number of easter eggs: 2
#this should be imported as a python module using 'import analysis'
#setup:
__all__ = [
'_init_device',
'c_entities',
'nc_entities',
'obstacles',
'objectives',
'load_csv',
'basic_stats',
'z_score',
'stdev_z_split',
'histo_analysis', #histo_analysis_old is intentionally left out
'poly_regression',
'r_squared',
'rms',
'basic_analysis',
]
#now back to your regularly scheduled programming:
import warnings
import statistics
import math
import csv
import functools
import numpy as np
import time
import torch
import scipy
import matplotlib
from sklearn import *
def _init_device (setting, arg): #initiates computation device for ANNs
if setting == "cuda":
temp = setting + ":" + arg
the_device_woman = torch.device(temp if torch.cuda.is_available() else "cpu")
return the_device_woman #name that reference
elif setting == "cpu":
the_device_woman = torch.device("cpu")
return the_device_woman #name that reference
else:
return "error:specified device does not exist"
class c_entities:
c_names = []
c_ids = []
c_pos = []
c_porperties = []
c_properties = []
c_logic = []
def debug(self):
print("c_entities has attributes names, ids, positions, properties, and logic. __init__ takes self, 1d array of names, 1d array of ids, 2d array of positions, nd array of properties, and nd array of logic")
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_logic]
def __init__(self, names, ids, pos, properties, logic):
self.c_names = names
self.c_ids = ids
self.c_pos = pos
self.c_properties = properties
self.c_logic = logic
return None
def append(self, n_name, n_id, n_pos, n_property, n_logic):
self.c_names.append(n_name)
self.c_ids.append(n_id)
self.c_pos.append(n_pos)
self.c_properties.append(n_property)
self.c_logic.append(n_logic)
return None
def edit(self, search, n_name, n_id, n_pos, n_property, n_logic):
position = 0
for i in range(0, len(self.c_ids), 1):
if self.c_ids[i] == search:
position = i
if n_name != "null":
self.c_names[position] = n_name
if n_id != "null":
self.c_ids[position] = n_id
if n_pos != "null":
self.c_pos[position] = n_pos
if n_property != "null":
self.c_properties[position] = n_property
if n_logic != "null":
self.c_logic[position] = n_logic
return None
def search(self, search):
position = 0
for i in range(0, len(self.c_ids), 1):
if self.c_ids[i] == search:
position = i
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_properties[position], self.c_logic[position]]
def regurgitate(self):
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_logic]
class nc_entities:
c_names = []
@ -23,7 +123,7 @@ class nc_entities:
c_effects = []
def debug(self):
print ("nc_entities (non-controlable entities) has attributes names, ids, positions, properties, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of psoitions, 2d array of properties, and 2d array of effects.")
print ("nc_entities (non-controlable entities) has attributes names, ids, positions, properties, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of positions, 2d array of properties, and 2d array of effects.")
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
def __init__(self, names, ids, pos, properties, effects):
@ -41,6 +141,8 @@ class nc_entities:
self.c_properties.append(n_property)
self.c_effects.append(n_effect)
return None
def edit(self, search, n_name, n_id, n_pos, n_property, n_effect):
position = 0
for i in range(0, len(self.c_ids), 1):
@ -71,6 +173,10 @@ class nc_entities:
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_properties[position], self.c_effects[position]]
def regurgitate(self):
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
class obstacles:
c_names = []
@ -124,6 +230,10 @@ class obstacles:
return [self.c_names[position], self.c_ids[position], self.c_perim[position], self.c_effects[position]]
def regurgitate(self):
return[self.c_names, self.c_ids, self.c_perim, self.c_effects]
class objectives:
c_names = []
@ -178,6 +288,10 @@ class objectives:
return [self.c_names[position], self.c_ids[position], self.c_pos[position], self.c_effects[position]]
def regurgitate(self):
return[self.c_names, self.c_ids, self.c_pos, self.c_effects]
def load_csv(filepath):
with open(filepath, newline = '') as csvfile:
file_array = list(csv.reader(csvfile))
@ -203,8 +317,17 @@ def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'co
mode = statistics.mode(data_t)
except:
mode = None
stdev = statistics.stdev(data_t)
variance = statistics.variance(data_t)
try:
stdev = statistics.stdev(data)
except:
stdev = None
try:
variance = statistics.variance(data_t)
except:
variance = None
out = [mean, median, mode, stdev, variance]
@ -216,7 +339,10 @@ def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'co
c_data_sorted = []
for i in data:
c_data.append(float(i[arg]))
try:
c_data.append(float(i[arg]))
except:
pass
mean = statistics.mean(c_data)
median = statistics.median(c_data)
@ -224,8 +350,14 @@ def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'co
mode = statistics.mode(c_data)
except:
mode = None
stdev = statistics.stdev(c_data)
variance = statistics.variance(c_data)
try:
stdev = statistics.stdev(c_data)
except:
stdev = None
try:
variance = statistics.variance(c_data)
except:
variance = None
out = [mean, median, mode, stdev, variance]
@ -244,8 +376,14 @@ def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'co
mode = statistics.mode(r_data)
except:
mode = None
stdev = statistics.stdev(r_data)
variance = statistics.variance(r_data)
try:
stdev = statistics.stdev(r_data)
except:
stdev = None
try:
variance = statistics.variance(r_data)
except:
variance = None
out = [mean, median, mode, stdev, variance]
@ -253,11 +391,11 @@ def basic_stats(data, mode, arg): # data=array, mode = ['1d':1d_basic_stats, 'co
else:
return ["mode_error", "mode_error"]
def z_score(point, mean, stdev):
def z_score(point, mean, stdev): #returns z score with inputs of point, mean and standard deviation of spread
score = (point - mean)/stdev
return score
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
def stdev_z_split(mean, stdev, delta, low_bound, high_bound): #returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
z_split = []
@ -275,7 +413,7 @@ def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
return z_split
def histo_analysis(hist_data): #note: depreciated
def histo_analysis_old(hist_data): #note: depreciated
if hist_data == 'debug':
return['lower estimate (5%)', 'lower middle estimate (25%)', 'middle estimate (50%)', 'higher middle estimate (75%)', 'high estimate (95%)', 'standard deviation', 'note: this has been depreciated']
@ -286,6 +424,8 @@ def histo_analysis(hist_data): #note: depreciated
derivative_sorted = sorted(derivative, key=int)
mean_derivative = basic_stats(derivative_sorted, "1d", 0)[0]
print(mean_derivative)
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
low_bound = mean_derivative + -1.645 * stdev_derivative
@ -302,10 +442,10 @@ def histo_analysis(hist_data): #note: depreciated
return [low_est, lm_est, mid_est, hm_est, high_est, stdev_derivative]
def histo_analysis_2(hist_data, delta, low_bound, high_bound):
def histo_analysis(hist_data, delta, low_bound, high_bound):
if hist_data == 'debug':
return ('returns list of predicted values based on historical data; input delta for delta step in z-score and lower and igher bounds in number for standard deviations')
return ('returns list of predicted values based on historical data; input delta for delta step in z-score and lower and higher bounds in number for standard deviations')
derivative = []
@ -323,14 +463,107 @@ def histo_analysis_2(hist_data, delta, low_bound, high_bound):
while True:
pred_change = mean_derivative + i * stdev_derivative
if i > high_bound:
break
try:
pred_change = mean_derivative + i * stdev_derivative
except:
pred_change = mean_derivative
predictions.append(float(hist_data[-1:][0]) + pred_change)
i = i + delta
if i > high_bound:
break
return predictions
def poly_regression(x, y, power):
if x == "null":
x = []
for i in range(len(y)):
x.append(i)
reg_eq = scipy.polyfit(x, y, deg = power)
print(reg_eq)
eq_str = ""
for i in range(0, len(reg_eq), 1):
if i < len(reg_eq)- 1:
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")+"
else:
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")"
vals = []
for i in range(0, len(x), 1):
print(x[i])
z = x[i]
exec("vals.append(" + eq_str + ")")
print(vals)
_rms = rms(vals, y)
r2_d2 = r_squared(vals, y)
return [eq_str, _rms, r2_d2]
def r_squared(predictions, targets): # assumes equal size inputs
out = metrics.r2_score(targets, predictions)
return out
def rms(predictions, targets): # assumes equal size inputs
out = 0
_sum = 0
avg = 0
for i in range(0, len(targets), 1):
_sum = (targets[i] - predictions[i]) ** 2
avg = _sum/len(targets)
out = math.sqrt(avg)
return float(out)
def basic_analysis(filepath): #assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
data = load_csv(filepath)
row = len(data)
column = []
for i in range(0, row, 1):
column.append(len(data[i]))
column_max = max(column)
row_b_stats = []
row_histo = []
for i in range(0, row, 1):
row_b_stats.append(basic_stats(data, "row", i))
row_histo.append(histo_analysis(data[i], 0.67449, -0.67449, 0.67449))
column_b_stats = []
for i in range(0, column_max, 1):
column_b_stats.append(basic_stats(data, "column", i))
return[row_b_stats, column_b_stats, row_histo]

BIN
analysis.pyc Normal file

Binary file not shown.

8
analysis_benchmark.py Normal file
View File

@ -0,0 +1,8 @@
import analysis
import time
start = time.time()
analysis.basic_analysis("data.txt")
end = time.time()
print(end - start)

View File

@ -6,24 +6,33 @@ print(analysis.basic_stats(0, 'debug', 0))
print(analysis.basic_stats(data, "column", 0))
print(analysis.basic_stats(data, "row", 0))
print(analysis.z_score(10, analysis.basic_stats(data, "column", 0)[0],analysis.basic_stats(data, "column", 0)[3]))
print(analysis.histo_analysis(data[0]))
print(analysis.histo_analysis_2(data[0], 0.01, -1, 1))
print(analysis.histo_analysis(data[0], 0.01, -1, 1))
print(analysis.stdev_z_split(3.3, 0.2, 0.1, -5, 5))
game_c_entities = analysis.c_entities(["bot", "bot", "bot"], [0, 1, 2], [[10, 10], [-10, -10], [10, -10]], ["shit", "bad", "worse"], ["triangle", "square", "circle"])
game_c_entities.append("bot", 3, [-10, 10], "useless", "pentagram")
game_c_entities.edit(0, "null", "null", "null", "null", "triagon")
print(game_c_entities.search(0))
print(game_c_entities.debug())
print(game_c_entities.regurgitate())
game_nc_entities = analysis.nc_entities(["cube", "cube", "ball"], [0, 1, 2], [[0, 0.5], [1, 1.5], [2, 2]], ["1;1;1;10', '2;1;1;20", "r=0.5, 5"], ["1", "1", "0"])
game_nc_entities.append("cone", 3, [1, -1], "property", "effect")
game_nc_entities.edit(2, "sphere", 10, [5, -5], "new prop", "new effect")
print(game_nc_entities.search(10))
print(game_nc_entities.debug())
print(game_nc_entities.regurgitate())
game_obstacles = analysis.obstacles(["wall", "fortress", "castle"], [0, 1, 2],[[[10, 10], [10, 9], [9, 10], [9, 9]], [[-10, 9], [-10, -9], [-9, -10]], [[5, 0], [4, -1], [-4, -1]]] , [0, 0.01, 10])
game_obstacles.append("bastion", 3, [[50, 50], [49, 50], [50, 49], [49, 49]], 75)
game_obstacles.edit(0, "motte and bailey", "null", [[10, 10], [9, 10], [10, 9], [9, 9]], 0.01)
print(game_obstacles.search(0))
print(game_obstacles.debug())
print(game_obstacles.regurgitate())
game_objectives = analysis.objectives(["switch", "scale", "climb"], [0,1,2], [[0,0],[1,1],[2,0]], ["0,1", "1,1", "0,5"])
game_objectives.append("auto", 3, [0, 10], "1, 10")
game_objectives.edit(3, "null", 4, "null", "null")
print(game_objectives.search(4))
print(game_objectives.debug())
print(game_objectives.regurgitate())

1049
data.txt

File diff suppressed because one or more lines are too long

View File

@ -4,7 +4,7 @@ def generate(filename, x, y, low, high):
file = open(filename, "w")
for i in range (0, y - 1, 1):
for i in range (0, y, 1):
temp = ""

669
statistics.py Normal file
View File

@ -0,0 +1,669 @@
"""
Basic statistics module.
This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.
Calculating averages
--------------------
================== =============================================
Function Description
================== =============================================
mean Arithmetic mean (average) of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
================== =============================================
Calculate the arithmetic mean ("the average") of data:
>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625
Calculate the standard median of discrete data:
>>> median([2, 3, 4, 5])
3.5
Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:
>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
2.8333333333...
This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...
Calculating variability or spread
---------------------------------
================== =============================================
Function Description
================== =============================================
pvariance Population variance of data.
variance Sample variance of data.
pstdev Population standard deviation of data.
stdev Sample standard deviation of data.
================== =============================================
Calculate the standard deviation of sample data:
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
4.38961843444...
If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5
Exceptions
----------
A single exception is defined: StatisticsError is a subclass of ValueError.
"""
__all__ = [ 'StatisticsError',
'pstdev', 'pvariance', 'stdev', 'variance',
'median', 'median_low', 'median_high', 'median_grouped',
'mean', 'mode', 'harmonic_mean',
]
import collections
import math
import numbers
from fractions import Fraction
from decimal import Decimal
from itertools import groupby
from bisect import bisect_left, bisect_right
# === Exceptions ===
class StatisticsError(ValueError):
pass
# === Private utilities ===
def _sum(data, start=0):
"""_sum(data [, start]) -> (type, sum, count)
Return a high-precision sum of the given numeric data as a fraction,
together with the type to be converted to and the count of items.
If optional argument ``start`` is given, it is added to the total.
If ``data`` is empty, ``start`` (defaulting to 0) is returned.
Examples
--------
>>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
(<class 'float'>, Fraction(11, 1), 5)
Some sources of round-off error will be avoided:
# Built-in sum returns zero.
>>> _sum([1e50, 1, -1e50] * 1000)
(<class 'float'>, Fraction(1000, 1), 3000)
Fractions and Decimals are also supported:
>>> from fractions import Fraction as F
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
(<class 'fractions.Fraction'>, Fraction(63, 20), 4)
>>> from decimal import Decimal as D
>>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
>>> _sum(data)
(<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
Mixed types are currently treated as an error, except that int is
allowed.
"""
count = 0
n, d = _exact_ratio(start)
partials = {d: n}
partials_get = partials.get
T = _coerce(int, type(start))
for typ, values in groupby(data, type):
T = _coerce(T, typ) # or raise TypeError
for n,d in map(_exact_ratio, values):
count += 1
partials[d] = partials_get(d, 0) + n
if None in partials:
# The sum will be a NAN or INF. We can ignore all the finite
# partials, and just look at this special one.
total = partials[None]
assert not _isfinite(total)
else:
# Sum all the partial sums using builtin sum.
# FIXME is this faster if we sum them in order of the denominator?
total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
return (T, total, count)
def _isfinite(x):
try:
return x.is_finite() # Likely a Decimal.
except AttributeError:
return math.isfinite(x) # Coerces to float first.
def _coerce(T, S):
"""Coerce types T and S to a common type, or raise TypeError.
Coercion rules are currently an implementation detail. See the CoerceTest
test class in test_statistics for details.
"""
# See http://bugs.python.org/issue24068.
assert T is not bool, "initial type T is bool"
# If the types are the same, no need to coerce anything. Put this
# first, so that the usual case (no coercion needed) happens as soon
# as possible.
if T is S: return T
# Mixed int & other coerce to the other type.
if S is int or S is bool: return T
if T is int: return S
# If one is a (strict) subclass of the other, coerce to the subclass.
if issubclass(S, T): return S
if issubclass(T, S): return T
# Ints coerce to the other type.
if issubclass(T, int): return S
if issubclass(S, int): return T
# Mixed fraction & float coerces to float (or float subclass).
if issubclass(T, Fraction) and issubclass(S, float):
return S
if issubclass(T, float) and issubclass(S, Fraction):
return T
# Any other combination is disallowed.
msg = "don't know how to coerce %s and %s"
raise TypeError(msg % (T.__name__, S.__name__))
def _exact_ratio(x):
"""Return Real number x to exact (numerator, denominator) pair.
>>> _exact_ratio(0.25)
(1, 4)
x is expected to be an int, Fraction, Decimal or float.
"""
try:
# Optimise the common case of floats. We expect that the most often
# used numeric type will be builtin floats, so try to make this as
# fast as possible.
if type(x) is float or type(x) is Decimal:
return x.as_integer_ratio()
try:
# x may be an int, Fraction, or Integral ABC.
return (x.numerator, x.denominator)
except AttributeError:
try:
# x may be a float or Decimal subclass.
return x.as_integer_ratio()
except AttributeError:
# Just give up?
pass
except (OverflowError, ValueError):
# float NAN or INF.
assert not _isfinite(x)
return (x, None)
msg = "can't convert type '{}' to numerator/denominator"
raise TypeError(msg.format(type(x).__name__))
def _convert(value, T):
"""Convert value to given numeric type T."""
if type(value) is T:
# This covers the cases where T is Fraction, or where value is
# a NAN or INF (Decimal or float).
return value
if issubclass(T, int) and value.denominator != 1:
T = float
try:
# FIXME: what do we do if this overflows?
return T(value)
except TypeError:
if issubclass(T, Decimal):
return T(value.numerator)/T(value.denominator)
else:
raise
def _counts(data):
# Generate a table of sorted (value, frequency) pairs.
table = collections.Counter(iter(data)).most_common()
if not table:
return table
# Extract the values with the highest frequency.
maxfreq = table[0][1]
for i in range(1, len(table)):
if table[i][1] != maxfreq:
table = table[:i]
break
return table
def _find_lteq(a, x):
'Locate the leftmost value exactly equal to x'
i = bisect_left(a, x)
if i != len(a) and a[i] == x:
return i
raise ValueError
def _find_rteq(a, l, x):
'Locate the rightmost value exactly equal to x'
i = bisect_right(a, x, lo=l)
if i != (len(a)+1) and a[i-1] == x:
return i-1
raise ValueError
def _fail_neg(values, errmsg='negative value'):
"""Iterate over values, failing if any are less than zero."""
for x in values:
if x < 0:
raise StatisticsError(errmsg)
yield x
# === Measures of central tendency (averages) ===
def mean(data):
"""Return the sample arithmetic mean of data.
>>> mean([1, 2, 3, 4, 4])
2.8
>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)
>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
Decimal('0.5625')
If ``data`` is empty, StatisticsError will be raised.
"""
if iter(data) is data:
data = list(data)
n = len(data)
if n < 1:
raise StatisticsError('mean requires at least one data point')
T, total, count = _sum(data)
assert count == n
return _convert(total/n, T)
def harmonic_mean(data):
"""Return the harmonic mean of data.
The harmonic mean, sometimes called the subcontrary mean, is the
reciprocal of the arithmetic mean of the reciprocals of the data,
and is often appropriate when averaging quantities which are rates
or ratios, for example speeds. Example:
Suppose an investor purchases an equal value of shares in each of
three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
What is the average P/E ratio for the investor's portfolio?
>>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
3.6
Using the arithmetic mean would give an average of about 5.167, which
is too high.
If ``data`` is empty, or any element is less than zero,
``harmonic_mean`` will raise ``StatisticsError``.
"""
# For a justification for using harmonic mean for P/E ratios, see
# http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
# http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
if iter(data) is data:
data = list(data)
errmsg = 'harmonic mean does not support negative values'
n = len(data)
if n < 1:
raise StatisticsError('harmonic_mean requires at least one data point')
elif n == 1:
x = data[0]
if isinstance(x, (numbers.Real, Decimal)):
if x < 0:
raise StatisticsError(errmsg)
return x
else:
raise TypeError('unsupported type')
try:
T, total, count = _sum(1/x for x in _fail_neg(data, errmsg))
except ZeroDivisionError:
return 0
assert count == n
return _convert(n/total, T)
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
def median(data):
"""Return the median (middle value) of numeric data.
When the number of data points is odd, return the middle data point.
When the number of data points is even, the median is interpolated by
taking the average of the two middle values:
>>> median([1, 3, 5])
3
>>> median([1, 3, 5, 7])
4.0
"""
data = sorted(data)
n = len(data)
if n == 0:
raise StatisticsError("no median for empty data")
if n%2 == 1:
return data[n//2]
else:
i = n//2
return (data[i - 1] + data[i])/2
def median_low(data):
"""Return the low median of numeric data.
When the number of data points is odd, the middle value is returned.
When it is even, the smaller of the two middle values is returned.
>>> median_low([1, 3, 5])
3
>>> median_low([1, 3, 5, 7])
3
"""
data = sorted(data)
n = len(data)
if n == 0:
raise StatisticsError("no median for empty data")
if n%2 == 1:
return data[n//2]
else:
return data[n//2 - 1]
def median_high(data):
"""Return the high median of data.
When the number of data points is odd, the middle value is returned.
When it is even, the larger of the two middle values is returned.
>>> median_high([1, 3, 5])
3
>>> median_high([1, 3, 5, 7])
5
"""
data = sorted(data)
n = len(data)
if n == 0:
raise StatisticsError("no median for empty data")
return data[n//2]
def median_grouped(data, interval=1):
"""Return the 50th percentile (median) of grouped continuous data.
>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7
>>> median_grouped([52, 52, 53, 54])
52.5
This calculates the median as the 50th percentile, and should be
used when your data is continuous and grouped. In the above example,
the values 1, 2, 3, etc. actually represent the midpoint of classes
0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
class 3.5-4.5, and interpolation is used to estimate it.
Optional argument ``interval`` represents the class interval, and
defaults to 1. Changing the class interval naturally will change the
interpolated 50th percentile value:
>>> median_grouped([1, 3, 3, 5, 7], interval=1)
3.25
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5
This function does not check whether the data points are at least
``interval`` apart.
"""
data = sorted(data)
n = len(data)
if n == 0:
raise StatisticsError("no median for empty data")
elif n == 1:
return data[0]
# Find the value at the midpoint. Remember this corresponds to the
# centre of the class interval.
x = data[n//2]
for obj in (x, interval):
if isinstance(obj, (str, bytes)):
raise TypeError('expected number but got %r' % obj)
try:
L = x - interval/2 # The lower limit of the median interval.
except TypeError:
# Mixed type. For now we just coerce to float.
L = float(x) - float(interval)/2
# Uses bisection search to search for x in data with log(n) time complexity
# Find the position of leftmost occurrence of x in data
l1 = _find_lteq(data, x)
# Find the position of rightmost occurrence of x in data[l1...len(data)]
# Assuming always l1 <= l2
l2 = _find_rteq(data, l1, x)
cf = l1
f = l2 - l1 + 1
return L + interval*(n/2 - cf)/f
def mode(data):
"""Return the most common data point from discrete or nominal data.
``mode`` assumes discrete data, and returns a single value. This is the
standard treatment of the mode as commonly taught in schools:
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3
This also works with nominal (non-numeric) data:
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'
If there is not exactly one most common value, ``mode`` will raise
StatisticsError.
"""
# Generate a table of sorted (value, frequency) pairs.
table = _counts(data)
if len(table) == 1:
return table[0][0]
elif table:
raise StatisticsError(
'no unique mode; found %d equally common values' % len(table)
)
else:
raise StatisticsError('no mode for empty data')
# === Measures of spread ===
# See http://mathworld.wolfram.com/Variance.html
# http://mathworld.wolfram.com/SampleVariance.html
# http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
#
# Under no circumstances use the so-called "computational formula for
# variance", as that is only suitable for hand calculations with a small
# amount of low-precision data. It has terrible numeric properties.
#
# See a comparison of three computational methods here:
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
def _ss(data, c=None):
"""Return sum of square deviations of sequence data.
If ``c`` is None, the mean is calculated in one pass, and the deviations
from the mean are calculated in a second pass. Otherwise, deviations are
calculated from ``c`` as given. Use the second case with care, as it can
lead to garbage results.
"""
if c is None:
c = mean(data)
T, total, count = _sum((x-c)**2 for x in data)
# The following sum should mathematically equal zero, but due to rounding
# error may not.
U, total2, count2 = _sum((x-c) for x in data)
assert T == U and count == count2
total -= total2**2/len(data)
assert not total < 0, 'negative sum of square deviations: %f' % total
return (T, total)
def variance(data, xbar=None):
"""Return the sample variance of data.
data should be an iterable of Real-valued numbers, with at least two
values. The optional argument xbar, if given, should be the mean of
the data. If it is missing or None, the mean is automatically calculated.
Use this function when your data is a sample from a population. To
calculate the variance from the entire population, see ``pvariance``.
Examples:
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095
If you have already calculated the mean of your data, you can pass it as
the optional second argument ``xbar`` to avoid recalculating it:
>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095
This function does not check that ``xbar`` is actually the mean of
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
impossible results.
Decimals and Fractions are supported:
>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('31.01875')
>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)
"""
if iter(data) is data:
data = list(data)
n = len(data)
if n < 2:
raise StatisticsError('variance requires at least two data points')
T, ss = _ss(data, xbar)
return _convert(ss/(n-1), T)
def pvariance(data, mu=None):
"""Return the population variance of ``data``.
data should be an iterable of Real-valued numbers, with at least one
value. The optional argument mu, if given, should be the mean of
the data. If it is missing or None, the mean is automatically calculated.
Use this function to calculate the variance from the entire population.
To estimate the variance from a sample, the ``variance`` function is
usually a better choice.
Examples:
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25
If you have already calculated the mean of the data, you can pass it as
the optional second argument to avoid recalculating it:
>>> mu = mean(data)
>>> pvariance(data, mu)
1.25
This function does not check that ``mu`` is actually the mean of ``data``.
Giving arbitrary values for ``mu`` may lead to invalid or impossible
results.
Decimals and Fractions are supported:
>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('24.815')
>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
Fraction(13, 72)
"""
if iter(data) is data:
data = list(data)
n = len(data)
if n < 1:
raise StatisticsError('pvariance requires at least one data point')
T, ss = _ss(data, mu)
return _convert(ss/n, T)
def stdev(data, xbar=None):
"""Return the square root of the sample variance.
See ``variance`` for arguments and other details.
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827
"""
var = variance(data, xbar)
try:
return var.sqrt()
except AttributeError:
return math.sqrt(var)
def pstdev(data, mu=None):
"""Return the square root of the population variance.
See ``pvariance`` for arguments and other details.
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251
"""
var = pvariance(data, mu)
try:
return var.sqrt()
except AttributeError:
return math.sqrt(var)