mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-27 09:59:10 +00:00
analysis.py v 1,1,5,001
This commit is contained in:
parent
ff2f0787ae
commit
56b575a753
Binary file not shown.
Binary file not shown.
@ -7,10 +7,12 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.5.000"
|
__version__ = "1.1.5.001"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.5.001:
|
||||||
|
- simplified regression by using .to(device)
|
||||||
1.1.5.000:
|
1.1.5.000:
|
||||||
- added polynomial regression to regression(); untested
|
- added polynomial regression to regression(); untested
|
||||||
1.1.4.000:
|
1.1.4.000:
|
||||||
@ -256,29 +258,26 @@ def histo_analysis(hist_data):
|
|||||||
def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01, power_limit = None): # inputs, outputs expects N-D array
|
def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01, power_limit = None): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
if power_limit == None:
|
if power_limit == None:
|
||||||
power_limit = len(outputs[0])
|
power_limit = len(outputs)
|
||||||
else:
|
else:
|
||||||
power_limit += 1
|
power_limit += 1
|
||||||
|
|
||||||
regressions = []
|
regressions = []
|
||||||
|
|
||||||
if 'cuda' in device:
|
|
||||||
|
|
||||||
Regression.set_device(device)
|
Regression.set_device(device)
|
||||||
|
|
||||||
if 'lin' in args:
|
if 'lin' in args:
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor([outputs]).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression.SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||||||
|
|
||||||
if 'log' in args:
|
if 'log' in args:
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression.SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||||||
|
|
||||||
if 'exp' in args:
|
if 'exp' in args:
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression.SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||||||
|
|
||||||
if 'ply' in args:
|
if 'ply' in args:
|
||||||
@ -287,49 +286,14 @@ def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterat
|
|||||||
|
|
||||||
for i in range(2, power_limit):
|
for i in range(2, power_limit):
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.PolyRegKernel(len(inputs),i), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations_ply * 10 ** i, learning_rate=lr_ply * 10 ** -i, return_losses=True)
|
model = Regression.SGDTrain(Regression.PolyRegKernel(len(inputs),i), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations_ply * 10 ** i, learning_rate=lr_ply * 10 ** -i, return_losses=True)
|
||||||
plys.append((model[0].parameters, model[1][::-1][0]))
|
plys.append((model[0].parameters, model[1][::-1][0]))
|
||||||
|
|
||||||
regressions.append(plys)
|
regressions.append(plys)
|
||||||
|
|
||||||
if 'sig' in args:
|
if 'sig' in args:
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression.SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
Regression.set_device(device)
|
|
||||||
|
|
||||||
if 'linear' in args:
|
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
|
||||||
|
|
||||||
if 'log' in args:
|
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
|
||||||
|
|
||||||
if 'exp' in args:
|
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
|
||||||
|
|
||||||
if 'ply' in args:
|
|
||||||
|
|
||||||
plys = []
|
|
||||||
|
|
||||||
for i in range(2, power_limit):
|
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.PolyRegKernel(len(inputs),i), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations_ply * 10 ** i, learning_rate=lr_ply * 10 ** -i, return_losses=True)
|
|
||||||
plys.append((model[0].parameters, model[1][::-1][0]))
|
|
||||||
|
|
||||||
regressions.append(plys)
|
|
||||||
|
|
||||||
if 'sig' in args:
|
|
||||||
|
|
||||||
model = Regression.SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
|
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
regressions.append((model[0].parameters, model[1][::-1][0]))
|
||||||
|
|
||||||
return regressions
|
return regressions
|
||||||
|
Loading…
Reference in New Issue
Block a user